4,232 research outputs found
Matrix Transfer Function Design for Flexible Structures: An Application
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure
Color separate singlets in annihilation
We use the method of color effective Hamiltonian to study the properties of
states in which a gluonic subsystem forms a color singlet, and we will study
the possibility that such a subsystem hadronizes as a separate unit. A parton
system can normally be subdivided into singlet subsystems in many different
ways, and one problem arises from the fact that the corresponding states are
not orthogonal. We show that if only contributions of order are
included, the problem is greatly simplified. Only a very limited number of
states are possible, and we present an orthogonalization procedure for these
states. The result is simple and intuitive and could give an estimate of the
possibility to produce color separated gluonic subsystems, if no dynamical
effects are important. We also study with a simple MC the possibility that
configurations which correspond to "short strings" are dynamically favored. The
advantage of our approach over more elaborate models is its simplicity, which
makes it easier to estimate color reconnection effects in reactions which are
more complicated than the relatively simple annihilation.Comment: Revtex, 24 pages, 7 figures; Compared to the previous version, 1 new
figure is added and Monte-Carlo results are re-analyzed, as suggested by the
referee; To appear in Phys. Rev.
Self-steepening of light pulses
Self-steepening of light pulses due to propagation in medium with intensity-dependent index of refractio
The mean magnetic field of the sun: Observations at Stanford
A solar telescope was built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field were made daily since May 1975. The typical mean field magnitude is about 0.15 gauss with typical measurement error less than 0.05 gauss. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (seen near the earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model
Electrodynamics of Media
Contains research objectives and reports on one research project.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 36-039-AMC-03200(E
A New Blind Method for Detecting Novel Steganography
Steganography is the art of hiding a message in plain sight. Modern steganographic tools that conceal data in innocuous-looking digital image files are widely available. The use of such tools by terrorists, hostile states, criminal organizations, etc., to camouflage the planning and coordination of their illicit activities poses a serious challenge. Most steganography detection tools rely on signatures that describe particular steganography programs. Signature-based classifiers offer strong detection capabilities against known threats, but they suffer from an inability to detect previously unseen forms of steganography. Novel steganography detection requires an anomaly-based classifier. This paper describes and demonstrates a blind classification algorithm that uses hyper-dimensional geometric methods to model steganography-free jpeg images. The geometric model, comprising one or more convex polytopes, hyper-spheres, or hyper-ellipsoids in the attribute space, provides superior anomaly detection compared to previous research. Experimental results show that the classifier detects, on average, 85.4% of Jsteg steganography images with a mean embedding rate of 0.14 bits per pixel, compared to previous research that achieved a mean detection rate of just 65%. Further, the classification algorithm creates models for as many training classes of data as are available, resulting in a hybrid anomaly/signature or signature-only based classifier, which increases Jsteg detection accuracy to 95%
Electrodynamics of Media
Contains research objectives and reports on four research projects.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E
Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at infinity
We study the Gross-Pitaevskii equation involving a nonlocal interaction
potential. Our aim is to give sufficient conditions that cover a variety of
nonlocal interactions such that the associated Cauchy problem is globally
well-posed with non-zero boundary condition at infinity, in any dimension. We
focus on even potentials that are positive definite or positive tempered
distributions.Comment: Communications in Partial Differential Equations (2010
The Bush War to Save the Rhino: Improving Counter-poaching Through Intelligence
The rhino is going extinct due to poaching at a rate which far outstrips current law enforcement or conservation efforts to halt their decline. A critical aspect of counter-poaching failures to date is an inaccurate view of the nature of poaching as a crime. Rather than demand-side efforts, attacking elusive smuggling networks, or expensive technical solutions like drones, this article notes how a quasi-military tactical approach of ‘combat tracking’ offers the best way to protect the species. Based on wide ranging interviews and fieldwork across dozens of parks in southern Africa, it demonstrates how the current restricted range of the rhino, and the rarity of skilled poachers, makes a tactical solution the most effective to date
Critical Behavior of a Three-State Potts Model on a Voronoi Lattice
We use the single-histogram technique to study the critical behavior of the
three-state Potts model on a (random) Voronoi-Delaunay lattice with size
ranging from 250 to 8000 sites. We consider the effect of an exponential decay
of the interactions with the distance,, with , and
observe that this system seems to have critical exponents and
which are different from the respective exponents of the three-state Potts
model on a regular square lattice. However, the ratio remains
essentially the same. We find numerical evidences (although not conclusive, due
to the small range of system size) that the specific heat on this random system
behaves as a power-law for and as a logarithmic divergence for
and Comment: 3 pages, 5 figure
- …