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RESEARCH OBJECTIVES

A major effort in this area came to a close with the publication, in August 1967, of

a research monographl based on this research work. This monograph constituted
Special Technical Report No. 14 of the Research Laboratory of Electronics.

Further theoretical work in electrodynamics of media will proceed in several
directions. Correct relativistic equations of a quadrupolar medium are not well under-

stood, at present, and these will be derived and examined. 2 A further examination of

power flow and energy as predicted in the previous work,1 and its relation to energy
and power flow as defined from the wave point of view, will be carried out. This is
especially important for magnetic material. The relationship between small-signal
power theorems and the principle of virtual power will be investigated.

The theoretical and experimental work on electrodynamics of nonlinear media in
the infrared range of frequencies will continue along the lines of the past year's

research.3, 4 The analysis of the linear and nonlinear response in inhomogeneously
broadened media will be refined and put to experimental test by propagating pulses with
nanosecond rise time through a CO 2 laser amplifier at 10. 6 1. Nonlinear interactions

of short pulses (of duration short compared with the inverse linewidths of the transi-
tions) will be studied experimentally and compared with theory.

L. J. Chu, H. A. Haus, P. Penfield, Jr.
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(XIX. ELECTRODYNAMICS OF MEDIA)

A. CO LASER RESEARCH

Equipment has been built for studying the linear and nonlinear pulsed response of

CO2 laser amplifiers. A variety of laser oscillators (Q-switched, cw, single P transi-

tion) have been constructed, and one multipass amplifier giving 16 dB of unsaturated

amplification is used in conjunction with oscillators. Gallium arsenide electro-optic-8
modulators are used in conjunction with cw lasers to produce pulses <10-8 sec long.

Q-switched CO 2 oscillators produce pulses approximately 10- 7 sec long.

For fast detectors we are using a Ge:Au detector at 770 K (20 nsec rise time), and

Ge:Cu detectors at 4. 20 K (1 nsec rise time). A one-half meter spectrometer is used

for detection of different transitions.

The necessary electrical equipment for nanosecond voltage pulses has also been

purchased or constructed. This includes a Tektronix 556 dual-beam oscilloscope with

1Al and 1S1 plug-in units, a marx-bank voltage generator, and other voltage generators.

T. J. Bridges, P. W. Hoff

B. INTERPRETATION OF ENERGY AND POWER IN UNIFORMLY

MOVING MEDIA

Many years ago, Brillouin1 presented an expression for the energy density in a

linear, time-dispersive material that is describable by a dielectric tensor E which, in

general, is a complex function of frequency.

W E 8 (wE) E. (1)

This expression was supplemented 2 later by an expression for power-flow density in

such a medium,

(SB i - Re (EX * +E X) +1 E k. ( E, (2)
1

where k is the propagation constant. These two obey the conservation relation

8W- B
V s + Bat 0. (3)

Such expressions are useful for several reasons. For example, discussions of the

activity of materials can be based on investigations of whether or not WB is inherently

positive or, on the other hand, can be negative.

These expressions are based upon a form of Maxwell's equations in which the

constitutive laws of the material involved w and k. This dependence upon w and k can

arise not only because of non-local interactions, or the usual dispersion in stationary
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(XIX. ELECTRODYNAMICS OF MEDIA)

material, but also because of motion of material that, when stationary, is nondispersive.

We have investigated the physical meaning of these expressions for power in a linear

isotropic dielectric material that is set in motion, and maintained in motion, at a

constant, uniform velocity V. In the Chu formulation of electromagnetism, the dielec-

tric tensor E then becomes a function of w and k, because of the motion. Thus the

medium is dispersive when it is in motion, even if it is nondispersive in the rest frame.

In this case, WB and SB do not coincide with the true power flow and energy of a3
moving dielectric, as reported by Penfield and Haus. If certain relativistic terms are

neglected, the analysis of Penfield and Haus leads to the following expressions for

energy and power flow in a moving dielectric which in the rest frame is nondispersive.

W - E E + W (4)T 2o m

ST = EX H - t - P(E ) + W , (5)T m

where W is the rest-frame energy density associated with the material. The sub-m
script T in these expressions indicates that we consider these to be the "true" energy

and power flow. These expressions obey the conservation relation,

aWS T
T at fk V (6)

where fk is the force density acting upon the material,

f k =V-t+ P E. (7)

The term -fk * v can therefore be interpreted as the power supplied, per unit volume,

by the agent maintaining the material in constant, uniform motion. In these expres-

sions, for simplicity, certain relativistic terms have been neglected.

It is obvious that WT and ST cannot be equal to WB and SB. This can be seen

because the conservation relation (3) has zero on the right-hand side, whereas the

conservation relation (6) has something that, in general, is nonzero. Thus we are

justified in concluding that WB and SB cannot be regarded as the true energy density

and power-flow vector of a moving dielectric.

The relation between these energies and power flows can be found, however, by

using the following identity which comes from Maxwell' s equations.

V . [EX H+ EX (VX P)] +- E + Wo )= 0, (8)a t o m

where we have assumed that there is no free charge or free current, and the velocity
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is uniform in space and time, as is the density of the material and its entropy. We have

only retained terms to first order in the magnetic field H, to be consistent with our

nonrelativistic assumptions. The relativistic treatment is not difficult, however, and

will be the subject of a future paper. Equation 8 can be found by taking the dot product

of V with (7), and working with the resulting terms to put them in the form of perfect

divergences or time rates of change. There is, however, no justification for consid-

ering the terms that appear in (8) as true power flow or energy, in any sense.

We are led to ask whether there is any relationship between the quantities in (8)

and those in (1) and (2). In our simple case, for which we assume that the material is

isotropic in the rest frame, and if (as before) certain relativistic terms are neglected,

the dielectric tensor E as a function of w and k is of the form

E = E + (E-E) I - (E-E), (9)

and it may be verified that the extra term in (2) reduces to E X (VX P).

We see, therefore, that the extra term in (2) can be interpreted physically as

arising from conversion of energy from electromagnetic form to other forms. In

particular, if there is some agent that maintains the dielectric moving at a constant

uniform velocity V, then this agent in general must supply or accept power, and the

extra term in (2) accounts for this in terms of the electromagnetic variables. This is

its physical interpretation.

The energy expression (1) is often used to investigate possible activity of a physical

system. For the moving dielectric, this may be negative, whereas ordinarily the true

energy WT is not. Thus we see that the physical source of the activity is, as is rea-

sonable, the agent keeping the dielectric in motion, and indeed activity can be investi-

gated by means of (6) by inquiring when fk " v can be negative.

H. A. Haus, P. Penfield, Jr.
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C. FORCE ON MAGNETIC DIPOLE AND ELECTRIC

CURRENT LOOP

Tellegen1 has pointed out that the force exerted on a pair of magnetic charges in a

time-variant electromagnetic field is different from that exerted on a circulating cur-

rent loop, with the same magnetic dipole moment. He suggested that an experiment

could decide whether a magnetic dipole was in fact an entity made up of two magnetic

charges or a circulating current loop.

The authors 2 have pointed out that a circulating current loop in an electric field

acquires a momentum which, when changed, calls for a force. When this momentum

is taken into account, no difference results between a formulation of electrodynamics

based on magnetic dipoles (the Chu formulation) or one based on the model in which

magnetic dipoles are produced by electric current loops (Amperian current formula-

tion).

This report gives a simple model of a circulating current loop which takes into

account properly the kinetics of the charges making up the current loop. On the basis

of this model, we show that a Maxwell Demon, holding a magnetic dipole in an electro-

magnetic field, must exert the same force on a magnetic dipole made up of two station-

ary magnetic charges, as he would have to exert on a magnetic dipole made up of a

circulating current and having the same magnetic dipole moment.

Consider the force F m exerted upon a stationary, constant magnetic dipole made upm
of equal, opposite magnetic charges qm spaced a vector distance d apart. This force

in the most general situation of a time-variant electromagnetic field is given by

m- - - -
F m = q d VH = om - VH, (1)

where m = qm-- is the magnetic dipole moment. Next, consider the force exerted on

a circulating current of magnitude i following around a contour C. If the current is

made up of positive and negative charges such that the net charge is zero everywhere,

the force is entirely magnetic in character and given by

Fa = i ds X p. H = i (daX V) X oH  (2)

Here we have used a form of Stokes' theorem. Using the vector identity

(VX H) X da = da - VH - VH - da (3)

and one of Maxwell's equations,

aE
V X H = Eo at ' (4)

one may write Eq. 2 in the form
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aE m
F a 0m VH at X - (5)

c

where we have defined the magnetic dipole moment of the current loop,

o En=  ida. (6)

The forces (1) and (5) are not the same, a fact that made Tellegen suggest the possi-

bility of finding out experimentally whether a magnetic dipole is made up of two opposite

magnetic charges or a circulating current loop. We suggest here, on the basis of a

specific model, that such a test is impossible.

Consider, first, the magnetic dipole made up of magnetic charges. These are sta-

tionary and, in order to preserve the dipole moment constant, they must be rigidly con-

nected by a rod to overcome the attractive forces between the two magnetic charges. A

Maxwell Demon holding the dipole would have to exert upon the rod a force equal and

opposite to that of (1).

Next, consider the current loop. In order to construct a current loop that is electro-

magnetically indistinguishable from the magnetic dipole, one must constrain the current

flow in the closed contour. This can be accomplished by having charges flow through a

thin rigid tube following the contour C. Furthermore, if the electromagnetic field is

time-variant, the induced electric field would, in general, change the rate at which the

particles constituting the current would circulate around the loop. One convenient way

of ensuring that the circulating current is invariant under time-variant electromagnetic

fields is to assume that it is made up of "particles" that circulate at the speed of light.

An applied electric field then changes their momentum but not their speed, and hence the

dipole moment will remain constant, independently of the applied electromagnetic field.

Finally, in order to have no magnetic charge associated with the current, it is conve-

nient to think of the current i as made up of ZwRn particles of positive charge circulating

around one way and of an equal number of negative charge circulating in the opposite

direction, so that i = 2nqc. The net charge per unit length of the two streams of par-

ticles is zero.

We shall compute the force exerted by a Maxwell Demon who prevents the motion of

the circulating loop. Since, according to (2), the force applied to any portion of

the circulating current is perpendicular to the walls of the tube confining the current,

the entire force F is transferred to the tube. This is not the force experienced by the
a

Maxwell Demon holding the tube stationary. The circulating particles have a mass that

is a function of the electric field. If the particles gain or lose mass, the centrifugal

force acting upon the walls of the confining tube will not in general cancel, and the Max-

well Demon holding the tube will have to counterbalance the additional force that arises

from the unbalance of the centrifugal forces. The change of mass (momentum divided
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Fig. XIX-1. Magnetic dipole.

by the speed c) of a particle covering the distance ds is given by

q --
dM± = 2 E ds, (7)

c

where the upper and lower signs apply to positive and negative particles, respectively.

Consider, first, a time-invariant electric field (see Fig. XIX-1). If the mass in the

symmetry plane is given by M o , the mass at any point 4 along the contour is given by

M= M ±- E c o s R d .
0 o 2 y

The net centrifugal force exerted by the counter-rotating positive and negative charges

is given by

c Y sZ
0,

-cir(nM c) R d .r ± R

Using the fact that

r = cos + i sin ,

one sees that the net centrifugal force is zero. Next, consider a time-variant field

( E
E=i + - t

y yt t > 0,

(9)

(10)

(11)

where the time t is assumed to be long enough so that several traversals around the cir-
cular contour are made by any particle, but it is short enough so that (11) is an adequate

QPR No. 88



(XIX. ELECTRODYNAMICS OF MEDIA)

description of the field as a function of time over the time interval considered. Since

the time needed to cover an angular difference 4 - 4 , starting from the position 4o at

t = 0 is

t R, (12)c

one sees that a sufficiently small R allows t to be made arbitrarily small. Now con-

sider the change AM (4) of the mass as caused by the time-variant field alone. Com-

bining (8) and (12), one has

q YR 2  c4
AM(4) - 2 8t c -o) cos 4 d4. (13)

c

This equation gives the mass of a particle at the time t positioned at the angle c which

was at time t = 0 at position cy. When computing the centrifugal force that is used at any

particular time t (12) has to be kept fixed, and this provides a means for eliminating

the starting angle 4.

SYR2 L ct ct(14)
AM (4) - 2 8t c sin + cos 4 - cos R cos + sin R sin 4 (14)

c L

Next, consider the change in mass caused by the time-variant portion of the mag-

netic field upon the circulating negative charges. To obtain this expression, one must

simply realize that a change of mass of a negatively charged particle starting at -40

and ending at the angle -4 will be identical to the change of mass of a positive particle

starting at +4o and ending at the angle +4. When one realizes that transit time of the

negative particles is given by

jo0- 
t - - R, (15)c

one finds the expression

8E
M()_ = E Y R [ ct ct ct (

M Y at c sin 4 + cos -cos-- cos + sin -sin . (16)
c

To compute the contribution to the centrifugal force attributable to mass changes pro-

duced by the time-variant electric field, one must evaluate

S= Si nAM c dj. (17)

+,-
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When (14) and (16) are substituted in (17) and the integration is carried out one finds

8E
2nq 8 Y-

A - wR at i (18)

where we have averaged the expression over several transits of the particles and have

set

Kos = 0. (19)

With the definition

2- 2

i z2nqcirR m, (20)

Eq. 18 can be cast into vector form:

A X -. (21)

Thus far, Eq. 21 has been proved only for the special orientation of the electric field

with respect to the magnetic dipole of Fig. XIX-1. One can, however, go through a

similar derivation for an x-directed electric field. Since the changes produced in the

mass of the circulating particles, because of the two field components, are additive,

one can go independently through such an evaluation. A z-directed field does not pro-

duce such an effect. Adding contributions from the derivatives of the three field com-

ponents, one obtains (21) with no restriction upon the orientation of 8E/8t. The

time-average-centrifugal force of (21), is exerted by the particles upon the tubes

confining them. A Maxwell Demon holding the circulating current loop must overcome,

in addition to the forces exerted electromagnetically, the forces produced by the mass

unbalance. Hence the net force that must be exerted by a Maxwell Demon is equal to

the sum of Eqs. 5 and 21:

F + AF = iom . H. (22)

Thus we have shown that the force needed to hold a circulating current loop in a

time-variant electromagnetic field is equal to the force needed to hold a magnetic dipole

of equal magnetic moment made up of positive and negative magnetic charges. The proof

has been conducted by using a special case. General arguments have been given else-

where for the equality of forces exerted upon a magnetic dipole or circulating current

loops of equal magnetic dipole moment. The exercise presented here gives a picture of

the reasons for this equality.
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The authors are indebted to Dr. Pezaris, whose searching questions led to the

model presented here.

H. A. Haus, P. Penfield, Jr.
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D. TIME-AVERAGED ENERGY FUNCTIONS OF NONLINEAR

OPTICAL MEDIA

1. Introduction

In a continuing study of the interaction of intense short electromagnetic pulses with

nonlinear optical media, we have investigated the conditions under which thermodynamic

principles can be employed. In general, aside from the complications arising from non-

linearity, there is the possibility of frequency dependencies of the susceptibility tensors

that describe the nonlinear interaction. It is necessary to realize, in this case, that the

field is established in some manner. That is, the frequency dependence introduces

memory into the problem. This can be included by a consideration of specific time

evolutions of the field amplitudes from their initially zero values to their final values.

If one knows a priori that the "time-averaged" electric work done on the medium is a

function of the state of the medium, then the choice of method for field amplitude estab-

lishment must be arbitrary.

This criterion, then, allows one to determine general conditions for which such state

functions exist. These conditions will be shown to be less stringent than the steady-

state power conservation requirement.

2. General Formulation

We begin with series expansions for the polarization components. A general deriva-

tion is straightforward and follows from the work of Bloembergen.l The analysis will

be carried out for a situation in which three frequencies are present, two of which are

independent. The isotropic case will also only be considered, so that all the fields are

scalars. The results can easily be generalized to more complicated situations.

The electric field components are given by

E ake ei k + c. c ; k = 0, 1, 2 (1)
a k 2 a k i
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in which the frequencies satisfy

Sa = + . (2)

The expansion of the polarization component Pa in terms of the time derivatives of

the field amplitudes, is given by o

P = (-Ei) s + + s + s Ea0  ao a al  a2 ) wa a a a2  a a aI a.

a a a8a 1 a o ]¢ao

a 2  a2  a 1

(3)

in which the following operator notation has been employed

s EE 1 E (4a)a, a 1 a2  t a2

s E E E (4b)a2 Eal a2) a ) (4b)

s (E Ea) (s ( +s ) E E. (4c)

Henceforth, the frequency constraints on the various partial derivatives will not be indi-

cated explicitly. It is important, however, to notice the specific constraints, since a

transformation of these derivatives will be carried out eventually.

If the notation of Bloembergen is adopted, then

Xaa = X 0 = a +o a) (5)

so, for instance,

X2 1 3 = X( = -3 3) '  (6)

and thus

a = 2 (7a)

a1a= a l (7b)

32 -o 3 . (7c)
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The time-averaged differential work done on the nonlinear medium is given by a

Legendre transform of the function G, which is simpler to deal with.

aG afE )
at 8t S- ao  aO aO a a

O OO OO

where for a given a , Wa - and E = E , the sum over a contains the threeS-a a -a o  a o

possible values of the a's and their negatives. The angular brackets denote the time

average, which is taken over a few optical periods.

We wish to determine the conditions that must be obeyed in order for G to be a func-

tion of the state of the system.

First, the initial expression for P allows aG/at to be written

8G I
at 4

a00

s +s +s
a 1 a 2 awo 1 2

XaaaE E
o12 1 2

In this expression we shall investigate the first-order terms (f= 1)

s or s , which can be written as follows:
al a2

a E E -i
Sa. ja aoalaz al a a

a j=l aj

= a o

a 0

a 0 a a

(9)

involving oa and
0

2

-s E Ei
ao a aoala2 a a2 aj=l a o

o a o 12 J 1 2
aa~~ Oa~jaaa)a~ 2 1Ja

(10)

It is apparent that Xa a can be symmetrized in the pair of indices al, a2, whereas
o 1a2

this is not necessarily true for the pair a , a1 , or a2 . To proceed let us define the

deviations from such a symmetry:

Xaa2 Xa.a a.o I a 2 loj

a a.
X 0 1

a.'.1
(11)

where a i equals either a 1 or a z , and aj equals the other. We then seek differential con-

straints involving these X's.

Note that
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Sa - j (12)
(a aoa o 0 aj a

then (10) can be written

s ( Xa a a X ( Xo i E E E . (13)a a a a  a.a a a a a
ao j = 1 o o

8G aCombining (13) with the terms in--t in (9) which involve wa and sa a , one obtains

the total time derivative 0 a

c- a X E E E , (14)
8t -ao 8a oalZ a1 al a

a o
o

since s + s is the total time derivative operator. If the . = 0 terms of (9) are
a a

o
included, this leaves the remainder

X + X E E ZT E . (15)aoaa al a I a a a a a

This quantity must be integrable in order for the electric work done to be a state func-

tion. This in turn demands that the Maxwell relations be obeyed. These are both nec-

essary and sufficient conditions. From (15),

SaXo a 0 a j Xjai (16)aaa W a.a.a a.a.a /w a. a.a.oa aj o )o a.i . 1 13

for all a 0 ai * aj. These equations constitute a system of coupled linear partial dif-

ferential equations, whose solution is immediate if the frequency constraint is employed.

This constraint implies that the partial derivatives used up to this point can be trans-

formed according to, for a value of ao,

a a + (17 a)
a. a

1 0
a a1  a.

o 3 3

a a2

j*i

a (1 7b)-
a a

S(17b)
O O

QPR No. 88 101



(XIX. ELECTRODYNAMICS OF MEDIA)

for any function f(o' 0 1', 2 ) = f 1 a ' wal,a . The derivatives on the left are those

which have appeared up to this point; whereas, those on the right are directional deriv-
Of

atives. The derivative -- lies within the plane specified by the frequency con-

a.1

O
a

form the derivatives, the two independent integr ability conditions are2a 2

W X (xo = 0; k = 1, 2, (18)

oakj= ajao

where the derivatives occurring are those arising out of the last term in (16).

Consequently, the integrability condition, at least to lowest order in the amplitude

time derivatives, is

(0 Xa aaj = const. (19)

j=1 ( °

The arbitrary constant is immediately determined, since the conservation of steady-

state power yields

E E E i X +i X + i) + c. c. = 0. (20)
a al1 a 2  a+oala al laa 2  a 2 a2a ao

This is equivalent to (19) with the constant set equal to zero. Consequently, the con-

servation of power requirement, in this case, is a stronger restriction than the inte-

grability conditions. This is in contrast to the results for nondispersive media, in

which case the integrability conditions show directly that all of the X's are zero, which

is more stringent than (19).

The time derivative (-t-) can be readily determined, to first order, by adding to

(14) the total time derivative form of (15), which is

a a.
+ Xa E E E. (21)

8t aoala2  a j a

L _J)
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If one now uses (17) to transform the derivatives with respect to Wa and a which arise,

in (14), then the derivatives with respect to wa cancel identically and one is left with
O

G Re E a - a- aw X a E E . (22)
0 R o oala2 al a 1 lo2 2 a a2aoal al a2

To gain insight into the physical interpretation of the nonsymmetric character of the

susceptibility tensor components, we consider the time-averaged electric work done, F,

which is given by

F = <PE> - G

= F + AF. (22a)s

F s is the result that would be obtained from symmetric tensor components

FXaE a a + o E E + c. c. (23)s 2 a0  al 2 al a I  a 2  a 1 a 2

AF can be written as a divergence in frequency, within the plane of constraint

+2

AF = R (a =-V - R, (24)

m=-2 m
mO

where R is given by
am

aa a=( aao aa (2 5)
m m m o  o

for m equal to 1 or 2 and the respective complex conjugate for m equal to -1 or -2.

Associated with the state function, F, are two independent frequency-power for-

mulas. 2 ' 3 For wa and o independent, it is easily seen that
a1 a 2

Pa Pa I ao p 1  1
+ - (26a)

ao  al a1

Pa Pa 2  a20+ (26b)
ao  a 2  a2

in which
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p Re iw PEI (27)a. 2 a. a. a

6a =Re R = R+ R (28)a. 2 a 4 a. - a

Equations 22a, and 26 show that the vector R in frequency space, acts as a set of

dependent source terms, each component giving the complex power delivered at the

respective frequency. There is, however, no net power delivered by these "pseudo-

sources" so that it would be more appropriate to interpret them as internal pumps acting

to transfer power among the various frequency components.

The second-order terms have also been investigated. Similar results follow. In

particular, the conservation of steady-state power is once again both necessary and suf-

ficient to ensure that the time-averaged electric work done on the medium is a function

of state. In this case the state depends not only upon the field amplitudes, but also upon

the time derivatives.

For the particular case in which no internal sources exist AF M 0, and all the X's

must be zero. The power-frequency formulas reduce to the Manley-Rowe relations, and

the nondispersive and the dispersive portions of F are integrable separately. The latter

portion is the Pershan F function.4-7

3. Conclusion

The primary result deduced is the fact that the symmetry relations for the suscep-

tibility tensor components of a dispersive medium are not necessary in order for the

time-averaged electric work done on the medium to be a function of state of the system.

Since this time-averaged work is related to the internal energy increase or the free-

energy increase, this result also applies to the thermodynamic state functions.

T. K. Gustafson, H. A. Haus
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