145 research outputs found

    Advances in nanoscopic mechanobiological structure-property relationship in human bones for tailored fragility prevention

    Get PDF
    It is well documented that fragility fractures represent an enormous health, economic and psycho-social burden, leading to severe pain, loss of mobility, and even death. While clinical approaches focusing on macro down to micro-scale damage in bones are often ineffective to diagnose early fracture occurrence, nano-scale investigations are opening new frontiers for targeted fragility prevention. This review highlights a novel triad that merges advanced nano-imaging techniques, nano-mechanical characterization and finite element/molecular dynamics-based computational models to elucidate the structure-property relationship that leads to bone fractures. Techniques such as atomic force microscopy and high-resolution electron microscopy enable the evaluation of mechanobiological mechanisms and damage occurrence at the sub-micro scale, providing visualization of bone ultrastructure. Simultaneously, nanoindentation and micropillar compression offer precise measurements of mechanical properties, unraveling how bone responds to diverse forces. Pertaining computational tools, nano-scale modeling simulations explore the behavior of bone components under varying conditions, yielding crucial insights into fracture mechanisms. This holistic triad unveils interactions between mineralized collagen fibrils, cross-links, and bone structures, leading to targeted prevention and personalized treatment of bone fragility, by addressing their root causes at the nano-scale, potentially lowering their incidence and severity

    Tissue-selective expression of a conditionally-active ROCK2-estrogen receptor fusion protein

    Get PDF
    The serine/threonine kinases ROCK1 and ROCK2 are central mediators of actomyosin contractile force generation that act downstream of the RhoA small GTP-binding protein. As a result, they have key roles in regulating cell morphology and proliferation, and have been implicated in numerous pathological conditions and diseases including hypertension and cancer. Here we describe the generation of a gene-targeted mouse line that enables CRE-inducible expression of a conditionally-active fusion between the ROCK2 kinase domain and the hormone-binding domain of a mutated estrogen receptor (ROCK2:ER). This two-stage system of regulation allows for tissue-selective expression of the ROCK2:ER fusion protein, which then requires administration of estrogen analogues such as tamoxifen or 4-hydroxytamoxifen to elicit kinase activity. This conditional gain-of-function system was validated in multiple tissues by crossing with mice expressing CRE recombinase under the transcriptional control of cytokeratin14 (K14), murine mammary tumor virus (MMTV) or cytochrome P450 Cyp1A1 (Ah) promoters, driving appropriate expression in the epidermis, mammary or intestinal epithelia respectively. Given the interest in ROCK signaling in normal physiology and disease, this mouse line will facilitate research into the consequences of ROCK activation that could be used to complement conditional knockout models

    Chelate complexes of malic or citric acids with iron, manganese and zinc as a biologically active supplement for broiler chicken diet

    Get PDF
    The aim of the present study was to define the effects of the various doses of biologically active supplement, which was consisted of iron, manganese, zinc malates and citrates, on muscle mass formation, blood morphological composition and protein metabolism in broiler chickens during the entire period of their growth. It is shown, that chelate complexes of the life-critical trance elements stimulated muscle mass accumulation, which was associated with more efficient expenditure of amino acids for protein biosynthesis in myocytes. Researched morphological blood parameters were within the normal range for broiler chickens. From the physiological and biochemical point of view, the using of citrate malates is preferable to citrate

    Two novel mutations associated with ataxia-telangiectasia identified using an ion ampliSeq inherited disease panel

    Get PDF
    © 2017 Kuznetsova, Trofimov, Shubina, Kochetkova, Karetnikova, Barkov, Bakharev, Gusev and Sukhikh. Ataxia-telangiectasia (A-T), or Louis-Bar syndrome, is a rare neurodegenerative disorder associated with immunodeficiency. For families with at least one affected child, timely A-T genotyping during any subsequent pregnancy allows the parents to make an informed decision about whether to continue to term when the fetus is affected. Mutations in the ATM gene, which is 150 kb long, give rise to A-T; more than 600 pathogenic variants in ATM have been characterized since 1990 and new mutations continue to be discovered annually. Therefore, limiting genetic screening to previously known SNPs by PCR or hybridization with microarrays may not identify the specific pathog enic genotype in ATM for a given A-T family. However, recent developments in next-generation sequencing technology offer prompt high-throughput full-length sequencing of genomic fragments of interest. This allows the identification of the whole spectrum of mutations in a gene, including any novel ones. We report two A-T families with affected children and current pregnancies. Both families are consanguineous and originate from Caucasian regions of Russia and Azerbaijan. Before our study, no ATM mutations had been identified in the older children of these families. We used ion semiconductor sequencing and an Ion AmpliSeq ™ Inherited Disease Panel to perform complete ATM gene sequencing in a single member of each family. Then we compared the experimentally determined genotype with the affected/normal phenotype distribution in the whole family to provide unambiguous evidence of pathogenic mutations responsible for A-T. A single novel SNP was allocated to each family. In the first case, we found a mononucleotide deletion, and in the second, a mononucleotide insertion. Both mutations lead to truncation of the ATM protein product. Identification of the pathogenic mutation in each family was performed in a timely fashion, allowing the fetuses to be tested and diagnosed. The parents chose to continue with both pregnancies as both fetuses had a healthy genotype and thus were not at risk of A-T

    ATBF1 and NQO1 as candidate targets for allelic loss at chromosome arm 16q in breast cancer: Absence of somatic ATBF1 mutations and no role for the C609T NQO1 polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of heterozygosity (LOH) at chromosome arm 16q is frequently observed in human breast cancer, suggesting that one or more target tumor suppressor genes (TSGs) are located there. However, detailed mapping of the smallest region of LOH has not yet resulted in the identification of a TSG at 16q. Therefore, the present study attempted to identify TSGs using an approach based on mRNA expression.</p> <p>Methods</p> <p>A cDNA microarray for the 16q region was constructed and analyzed using RNA samples from 39 breast tumors with known LOH status at 16q.</p> <p>Results</p> <p>Five genes were identified to show lower expression in tumors with LOH at 16q compared to tumors without LOH. The genes for NAD(P)H dehydrogenase quinone (<it>NQO1</it>) and AT-binding transcription factor 1 (<it>ATBF1</it>) were further investigated given their functions as potential TSGs. <it>NQO1 </it>has been implicated in carcinogenesis due to its role in quinone detoxification and in stabilization of p53. One inactive polymorphic variant of <it>NQO1 </it>encodes a product showing reduced enzymatic activity. However, we did not find preferential targeting of the active <it>NQO1 </it>allele in tumors with LOH at 16q. Immunohistochemical analysis of 354 invasive breast tumors revealed that NQO1 protein expression in a subset of breast tumors is higher than in normal epithelium, which contradicts its proposed role as a tumor suppressor gene.</p> <p><it>ATBF1 </it>has been suggested as a target for LOH at 16q in prostate cancer. We analyzed the entire coding sequence in 48 breast tumors, but did not identify somatic sequence changes. We did find several in-frame insertions and deletions, two variants of which were reported to be somatic pathogenic mutations in prostate cancer. Here, we show that these variants are also present in the germline in 2.5% of 550 breast cancer patients and 2.9% of 175 healthy controls. This indicates that the frequency of these variants is not increased in breast cancer patients. Moreover, there is no preferential LOH of the wildtype allele in breast tumors.</p> <p>Conclusion</p> <p>Two likely candidate TSGs at 16q in breast cancer, <it>NQO1 </it>and <it>ATBF1</it>, were identified here as showing reduced expression in tumors with 16q LOH, but further analysis indicated that they are not target genes of LOH. Furthermore, our results call into question the validity of the previously reported pathogenic variants of the <it>ATBF1 </it>gene.</p

    CXCR4/CXCL12 Participate in Extravasation of Metastasizing Breast Cancer Cells within the Liver in a Rat Model

    Get PDF
    INTRODUCTION: Organ-specific composition of extracellular matrix proteins (ECM) is a determinant of metastatic host organ involvement. The chemokine CXCL12 and its receptor CXCR4 play important roles in the colonization of human breast cancer cells to their metastatic target organs. In this study, we investigated the effects of chemokine stimulation on adhesion and migration of different human breast cancer cell lines in vivo and in vitro with particular focus on the liver as a major metastatic site in breast cancer. METHODS: Time lapse microscopy, in vitro adhesion and migration assays were performed under CXCL12 stimulation. Activation of small GTPases showed chemokine receptor signalling dependence from ECM components. The initial events of hepatic colonisation of MDA-MB-231 and MDA-MB-468 cells were investigated by intravital microscopy of the liver in a rat model and under shRNA inhibition of CXCR4. RESULTS: In vitro, stimulation with CXCL12 induced increased chemotactic cell motility (p,0.05). This effect was dependent on adhesive substrates (type I collagen, fibronectin and laminin) and induced different responses in small GTPases, such as RhoA and Rac-1 activation, and changes in cell morphology. In addition, binding to various ECM components caused redistribution of chemokine receptors at tumour cell surfaces. In vivo, blocking CXCR4 decreased extravasation of highly metastatic MDA-MB-231 cells (p < 0.05), but initial cell adhesion within the liver sinusoids was not affected. In contrast, the less metastatic MDA-MB-468 cells showed reduced cell adhesion but similar migration within the hepatic microcirculation. CONCLUSION: Chemokine-induced extravasation of breast cancer cells along specific ECM components appears to be an important regulator but not a rate-limiting factor of their metastatic organ colonization.Claudia Wendel, André Hemping-Bovenkerk, Julia Krasnyanska, Sören Torge Mees, Marina Kochetkova, Sandra Stoeppeler and Jörg Haie

    Spin period evolution of GX 1+4

    Full text link
    We aim both to complement the existing data on the spin history of the peculiar accreting X-ray pulsar GX 1+4 with more past and current data from BeppoSAX, INTEGRAL, and Fermi and to interpret the evolution in the framework of accretion theory. We used source light curves obtained from BeppoSAX/WFC and INTEGRAL/ISGRI to derive pulse periods using an epoch-folding analysis. Fermi/GBM data were analyzed by fitting a constant plus a Fourier expansion to background-subtracted rates, and maximizing the Y2 statistic. We completed the sample with hard X-ray light curves from Swift/BAT. The data were checked for correlations between flux and changes of the pulsar spin on different timescales. The spin-down of the pulsar continues with a constant change in frequency, i.e., an apparently accelerating change in the period. Over the past three decades, the pulse period has increased by about ~50%. Short-term fluctuations on top of this long-term trend do show anti-correlation with the source flux. Possible explanations of the observed long-term frequency and its dependence on flux are discussed.Comment: Accepted for publication in A&

    p53 Target Gene SMAR1 Is Dysregulated in Breast Cancer: Its Role in Cancer Cell Migration and Invasion

    Get PDF
    Tumor suppressor SMAR1 interacts and stabilizes p53 through phosphorylation at its serine-15 residue. We show that SMAR1 transcription is regulated by p53 through its response element present in the SMAR1 promoter. Upon Doxorubicin induced DNA damage, acetylated p53 is recruited on SMAR1 promoter that allows activation of its transcription. Once SMAR1 is induced, cell cycle arrest is observed that is correlated to increased phospho-ser-15-p53 and decreased p53 acetylation. Further we demonstrate that SMAR1 expression is drastically reduced during advancement of human breast cancer. This was correlated with defective p53 expression in breast cancer where acetylated p53 is sequestered into the heterochromatin region and become inaccessible to activate SMAR1 promoter. In a recent report we have shown that SMAR1 represses Cyclin D1 transcription through recruitment of HDAC1 dependent repressor complex at the MAR site of Cyclin D1 promoter. Here we show that downmodulation of SMAR1 in high grade breast carcinoma is correlated with upregulated Cyclin D1 expression. We also established that SMAR1 inhibits tumor cell migration and metastases through inhibition of TGFβ signaling and its downstream target genes including cutl1 and various focal adhesion molecules. Thus, we report that SMAR1 plays a central role in coordinating p53 and TGFβ pathways in human breast cancer
    corecore