1,422 research outputs found

    Single-photon emitting diode in silicon carbide

    Full text link
    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide (SiC) an ideal material to build such devices. Here, we demonstrate the fabrication of bright single photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >>300 kHz), and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single photon source is proposed. These results provide a foundation for the large scale integration of single photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.Comment: Main: 10 pages, 6 figures. Supplementary Information: 6 pages, 6 figure

    Limits on models of the ultrahigh energy cosmic rays based on topological defects

    Get PDF
    An erratum exists for this article. Please see the description link below for details.Using the propagation of ultrahigh energy nucleons, photons, and electrons in the universal radiation backgrounds, we obtain limits on the luminosity of topological defect scenarios for the origin of the highest energy cosmic rays. The limits are set as a function of the mass of the X particles emitted by the cosmic strings or other defects, the cosmological evolution of the topological defects, and the strength of the extragalactic magnetic fields. The existing data on the cosmic ray spectrum and on the isotropic 100 MeV gamma-ray background limit significantly the parameter space in which topological defects can generate the flux of the highest energy cosmic rays, and rule out models with the standard X-particle mass of 10¹⁶GeV and higher.R. J. Protheroe and Todor Stane

    Global Optimization by Energy Landscape Paving

    Get PDF
    We introduce a novel heuristic global optimization method, energy landscape paving (ELP), which combines core ideas from energy surface deformation and tabu search. In appropriate limits, ELP reduces to existing techniques. The approach is very general and flexible and is illustrated here on two protein folding problems. For these examples, the technique gives faster convergence to the global minimum than previous approaches.Comment: to appear in Phys. Rev. Lett. (2002

    The Highest Energy Neutrinos

    Full text link
    Measurements of the arrival directions of cosmic rays have not revealed their sources. High energy neutrino telescopes attempt to resolve the problem by detecting neutrinos whose directions are not scrambled by magnetic fields. The key issue is whether the neutrino flux produced in cosmic ray accelerators is detectable. It is believed that the answer is affirmative, both for the galactic and extragalactic sources, provided the detector has kilometer-scale dimensions. We revisit the case for kilometer-scale neutrino detectors in a model-independent way by focussing on the energetics of the sources. The real breakthrough though has not been on the theory but on the technology front: the considerable technical hurdles to build such detectors have been overcome. Where extragalactic cosmic rays are concerned an alternative method to probe the accelerators consists in studying the arrival directions of neutrinos produced in interactions with the microwave background near the source, i.e. within a GZK radius. Their flux is calculable within large ambiguities but, in any case, low. It is therefore likely that detectors that are larger yet by several orders of magnitudes are required. These exploit novel techniques, such as detecting the secondary radiation at radio wavelengths emitted by neutrino induced showers.Comment: 16 pages, pdflatex, 7 jpg figures, ICRC style files included. Highlight talk presented at the 30th International Cosmic Ray Conference, Merida, Mexico, 200

    Factors influencing organic carbon recycling and burial in Skagerrak sediments

    Get PDF
    Different factors influencing recycling and burial rates of organic carbon (OC) were investigated in the continental margin sediments of the Skagerrak (NE North Sea). Two different areas, one in the southern and one in the northeastern part of the Skagerrak were visited shortly after a spring bloom (March 1999) and in late summer (August 2000). Results suggested that: (1) Organic carbon oxidation rates (Cox) (2.2–18 mmol C m-2d-11) were generally larger than the O2 uptake rates (1.9 –25 mmol m-2d-1). Both rates were measured in situ using a benthic lander. A mean apparent respiration ratio (Cox:O2corr) of 1.3±0.5 was found, indicating some long-term burial of reduced inorganic substances in these sediments. Measured O2 fluxes increased linearly with increasing Cox rates during the late summer cruise but not on the early spring cruise, indicating a temporal uncoupling of anaerobic mineralization and reoxidation of reduced substances. (2) Dissolved organic carbon (DOC) fluxes (0.2–1.0 mmol C m-2d-1) constituted 3–10% of the Cox rates and were positively correlated with the latter, implying that net DOC production rates were proportional to the overall sediment OC remineralization rates. (3) Chlorophyll a (Chl-a) concentrations in the sediment were significantly higher in early spring compared to late summer. The measured Cox rates, but not O2 fluxes, showed a strong positive correlation with the Chl-a inventories in the top 3 cm of the sediment. (4) Although no relationship was found between the benthic fluxes and the macrofaunal biomass in the chambers, total in situ measured dissolved inorganic carbon (CT) fluxes were 1–5.4 times higher than diffusive mediated CT fluxes, indicating that macrofauna have a significant impact on benthic exchange rates of OC remineralization products in Skagerrak sediments. (5) OC burial fluxes were generally higher in northeastern Skagerrak than in the southern part. The same pattern was observed for burial efficiencies, with annual means of ~62% and ~43% for the two areas respectively. (6) On a basin-wide scale, there was a significant positive linear correlation between the burial efficiencies and sediment accumulation rates. (7) The calculated particulate organic carbon (POC) deposition, from benthic flux and burial measurements, was only 24 –78% of the sediment trap measured POC deposition, indicating a strong near-bottom lateral transport and resuspension of POC. (8) A larger fraction of the laterally advected material of lower quality seemed to settle in the northeastern Skagerrak rather than in the southern Skagerrak. (9) Skagerrak sediments, especially in the northeastern part, act as an efficient net sink for organic carbon, even in a global continental margin context

    Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

    Get PDF
    We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive our cuts, which is consistent with 0.12 expected background events. Using NeuCosmA as a numerical GRB reference emission model, we estimate upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from 10710^{7} to 101010^{10} GeV. This is the first limit on the prompt UHE GRB neutrino quasi-diffuse flux above 10710^{7} GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa

    Depletion of nitrogen-vacancy color centers in diamond via hydrogen passivation

    Full text link
    We show a marked reduction in the emission from nitrogen-vacancy (NV) color centers in single crystal diamond due to exposure of the diamond to hydrogen plasmas ranging from 700{\deg}C to 1000{\deg}C. Significant fluorescence reduction was observed beneath the exposed surface to at least 80mm depth after ~10 minutes, and did not recover after post-annealing in vacuum for seven hours at 1100{\deg}C. We attribute the fluorescence reduction to the formation of NVH centers by the plasma induced diffusion of hydrogen. These results have important implications for the formation of nitrogen-vacancy centers for quantum applications, and inform our understanding of the conversion of nitrogen-vacancy to NVH, whilst also providing the first experimental evidence of long range hydrogen diffusion through intrinsic high-purity diamond material.Comment: 6 pages, 3 figure
    corecore