
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Faculty Publications, Department of Physics and
Astronomy Research Papers in Physics and Astronomy

2017

Constraints on the ultra-high-energy neutrino flux
from Gamma-Ray bursts from a prototype station
of the Askaryan radio array
P. Allison
Ohio State University

J. Auffenberg
University of Wisconsin-Madison

R. Bard
University of Maryland at College Park

J. J. Beatty
Ohio State University

D. Z. Besson
University of Kansas

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicsfacpub

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Physics and Astronomy by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Allison, P.; Auffenberg, J.; Bard, R.; Beatty, J. J.; Besson, D. Z.; Bora, C.; Chen, C.-C.; Chen, P.; Connolly, A.; Davies, J. P.; DuVernois,
M. A.; Fox, B.; Gorham, P. W.; Hanson, K.; Hill, B.; Hoffman, K. D.; Hong, E.; Hu, L.-C.; Ishihara, A.; Karle, A.; Kelley, J.; Kravchenko,
Ilya; Landsman, H.; Laundrie, A.; Li, C.-J.; Liu, T.; Lu, M.-Y.; Maunu, R.; Mase, K.; Meures, T.; Miki, C.; Nam, J.; Nichol, R. J.; Nir, G.;
Ó Murchadha, A.; Pfendner, C. G.; Ratzlaff, Kenneth L.; Rotter, B.; Sandstrom, P.; Seckel, D.; Shultz, A.; Song, M.; Stockham, J.;
Stockham, M.; Sullivan, M.; Touart, J.; Tu, H.-Y.; Varner, G. S.; Yoshida, S.; Young, R.; Bustamante, M.; and Guetta, D., "Constraints on
the ultra-high-energy neutrino flux from Gamma-Ray bursts from a prototype station of the Askaryan radio array" (2017). Faculty
Publications, Department of Physics and Astronomy. 180.
http://digitalcommons.unl.edu/physicsfacpub/180

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsresearch?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub/180?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
P. Allison, J. Auffenberg, R. Bard, J. J. Beatty, D. Z. Besson, C. Bora, C.-C. Chen, P. Chen, A. Connolly, J. P.
Davies, M. A. DuVernois, B. Fox, P. W. Gorham, K. Hanson, B. Hill, K. D. Hoffman, E. Hong, L.-C. Hu, A.
Ishihara, A. Karle, J. Kelley, Ilya Kravchenko, H. Landsman, A. Laundrie, C.-J. Li, T. Liu, M.-Y. Lu, R. Maunu,
K. Mase, T. Meures, C. Miki, J. Nam, R. J. Nichol, G. Nir, A. Ó Murchadha, C. G. Pfendner, Kenneth L.
Ratzlaff, B. Rotter, P. Sandstrom, D. Seckel, A. Shultz, M. Song, J. Stockham, M. Stockham, M. Sullivan, J.
Touart, H.-Y. Tu, G. S. Varner, S. Yoshida, R. Young, M. Bustamante, and D. Guetta

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/physicsfacpub/180

http://digitalcommons.unl.edu/physicsfacpub/180?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages


Astroparticle Physics 88 (2017) 7–16 

Contents lists available at ScienceDirect 

Astroparticle Physics 

journal homepage: www.elsevier.com/locate/astropartphys 

Constraints on the ultra-high-energy neutrino flux from Gamma-Ray 

bursts from a prototype station of the Askaryan radio array 

P. Allison 

a , J. Auffenber g 

i , R. Bard 

b , J.J. Beatty 

a , D.Z. Besson 

c , d , C. Bora 

e , C.-C. Chen 

f , 
P. Chen 

f , A. Connolly 

a , ∗, J.P. Davies g , M.A. DuVernois i , B. Fox 

h , P.W. Gorham 

h , K. Hanson 

k , 
B. Hill h , K.D. Hoffman 

b , E. Hong 

a , L.-C. Hu 

f , A. Ishihara 

l , A. Karle 

i , J. Kelley 

i , I. Kravchenko 

e , 
H. Landsman 

j , A. Laundrie 

i , C.-J. Li f , T. Liu 

f , M.-Y. Lu 

i , R. Maunu 

b , K. Mase 

l , T. Meures k , 
C. Miki h , J. Nam 

f , R.J. Nichol g , G. Nir j , A. Ó Murchadha 

k , C.G. Pfendner a , K. Ratzlaff n , 
B. Rotter h , P. Sandstrom 

i , D. Seckel m , A. Shultz 

e , M. Song 

b , J. Stockham 

c , M. Stockham 

c , 
M. Sullivan 

d , J. Touart b , H.-Y. Tu 

f , G.S. Varner h , S. Yoshida 

l , R. Young 

n , M. Bustamante 

a , 
D. Guetta 

o 

a Department of Physics and CCAPP, The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210, USA 
b Department of Physics, University of Maryland, College Park, MD 20742, USA 
c Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA 
d National Research Nuclear University - Moscow Engineering Physics Institute, 31 Kashirskaya Shosse, Moscow 115409, Russia 
e Department of Physics and Astronomy, University of Nebraska-Lincoln, 855 N 16th Street, Lincoln, NE 68588, USA 
f Department of Physics, Grad. Inst. of Astrophys.,& Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Sec. 4, 

Roosevelt Road, Taipei 10617, Taiwan (R.O.C.) 
g Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom 

h Department of Physics and Astronomy, University of Hawaii-Manoa, 2505 Correa Rd., Honolulu, HI 96822, USA 
i Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, 222 W. Washington Ave, Madison, WI 53706, 

USA 
j Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 76100, Israel 
k Service de physique des particules élémentaires, Université Libre de Bruxelles, CP230, boulevard du Triomphe, 1050 Bruxelles, Belgium 

l Department of Physics, Chiba University, 1–33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263–8522, Japan 
m Department of Physics and Astronomy, University of Delaware, 104 The Green, Newark, DE 19716, USA 
n Instrumentation Design Laboratory, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045, USA 
o ORT Braude, Karmiel 21982, OAR-INAF, Italy 

a r t i c l e i n f o 

Article history: 

Received 1 July 2015 

Revised 8 November 2016 

Accepted 5 December 2016 

Available online 7 December 2016 

Keywords: 

Gamma-Ray bursts 

UHE Neutrinos 

Radio cherenkov 

a b s t r a c t 

We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data 

set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected 

GRBs, we observed no events that survive our cuts, which is consistent with 0.12 expected background 

events. Using NeuCosmA as a numerical GRB reference emission model, we estimate upper limits on the 

prompt UHE GRB neutrino fluence and quasi-diffuse flux from 10 7 to 10 10 GeV. This is the first limit on 

the prompt UHE GRB neutrino quasi-diffuse flux above 10 7 GeV. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

Gamma-ray bursts (GRBs) are the most powerful explosions in 

the Universe. They emit high-energy gamma rays that are observ- 

able on Earth up to energies of ∼100 GeV, and are candidate 

∗ Corresponding author. 

E-mail address: connolly@physics.osu.edu (A. Connolly). 

sources of ultra-high-energy cosmic rays (UHECRs, above ∼ 10 9 

GeV), whose origin remains a mystery, and of neutrinos. The de- 

tection of neutrinos from GRBs would shine light on the ability of 

GRBs to accelerate hadrons to the highest energies, and therefore 

on the possibility that they are the sources of the observed UHE- 

CRs. 

The widely accepted phenomenological interpretation of par- 

ticle acceleration in GRBs is the fireball model [1–5] . In this 

model, the energy carried by the electrons and hadrons in a jet of 

http://dx.doi.org/10.1016/j.astropartphys.2016.12.003 
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relativistic, expanding plasma wind — the fireball — may be dis- 

sipated through internal shocks between regions of plasma over- 

density [6,7] . These shocks convert a substantial part of the ki- 

netic energy to internal energy by accelerating the particles in 

the plasma. Accelerated electrons dissipate the internal energy as 

prompt gamma rays from synchrotron and inverse-Compton emis- 

sion. Accelerated protons may dissipate the internal energy by in- 

teracting with the prompt gamma rays and producing neutrinos in 

the 10 5 –10 10 GeV range via a number of intermediate resonances 

[8,9] . Later — typically, a few minutes after the prompt phase —

the fireball collides with its surrounding medium, giving rise to re- 

verse and forward shocks. The latter are believed to be responsible 

for the GRB afterglow emission [10,11] , which may include neutri- 

nos of energies comparable to the prompt ones [12] . 

Thus, GRBs might conceivably produce high-energy neutrinos 

copiously. However, due to the immense distances separating us 

from the bursts — tens of Mpc to a few Gpc — the flux of neu- 

trinos that arrives at Earth is expected to be low. Moreover, the 

flux is expected to decrease with rising neutrino energy, due to 

the rising scarcity of protons of progressively higher energies at the 

sources. Over the last half-century, neutrino astronomy has steadily 

progressed in its ability to detect low fluxes, culminating in the re- 

cent detection of a diffuse astrophysical neutrino flux, up to a few 

PeV, by the km-scale IceCube neutrino telescope [13–18] . IceCube 

detects the optical Cherenkov light induced by neutrino interac- 

tions using > 50 0 0 photomultipliers buried � 1.5 km deep in the 

Antarctic ice. 

Significant sensitivity to higher neutrino energies requires 

larger detectors. While it can be cost-prohibitive to scale detectors 

that use techniques established for smaller scales up to volumes of 

order ∼ 100 km 

3 , an alternative is to utilize techniques that target 

a larger volume with less instrumentation. 

One of the most promising methods to detect neutrinos in 

the UHE range of 10 8 –10 10 GeV in a large volume is the radio- 

Cherenkov technique [19] . The interaction of a UHE neutrino in 

dense media induces an electromagnetic shower which develops 

a charge asymmetry. Because of this charge asymmetry, when the 

wavelength of the Cherenkov radiation is larger than the transverse 

size of the shower, the emission is coherent. This is known as the 

Askaryan effect [20–26] . For showers in ice, this process produces 

a radio frequency (RF) impulse at � 1 GHz which can be observed 

by antenna arrays read out with ∼ GHz sampling rates. In this fre- 

quency range, the attenuation length in Antarctic ice is ∼ 1 km 

[27,28] , allowing a sparsely distributed array of detector units to 

observe volumes of ∼ 100 km 

3 . This is the strategy adopted by 

the Askaryan Radio Array (ARA) [27,29,30] . In contrast, detectors 

that use optical Cherenkov signals are restricted by the � 100 m 

lengths over which attenuation, absorption, and scattering dimin- 

ish the signal, and thus require many more detector units to in- 

strument the same volume [31] . 

In this paper, we report on a search for UHE neutrinos from 

GRBs using the 2011–2012 data set collected by the ARA Testbed 

station. Previous experiments have searched for neutrinos from 

GRBs using different techniques. However, they have either been 

sensitive to lower energies [32,33] or only reported limits on the 

individual fluences of a handful of bursts [34] . Instead, we present 

an upper limit on the stacked fluence of UHE prompt neutrinos 

from 57 selected GRBs and the first limit on the prompt UHE GRB 

quasi-diffuse neutrino flux in the range 10 7 –10 10 GeV. 

This paper is organized as follows. In Section 2 , we summarize 

previous GRB neutrino searches. In Section 3 , we describe ARA and 

the Testbed station. In Section 4 , we introduce our reference GRB 

emission model, NeuCosmA, and the AraSim detector simulation. 

In Section 5 , we detail our data analysis pipeline. In Section 6 , we 

present our results. In Section 7 , we postulate future detection and 

analysis improvements. We conclude in Section 8 . 

2. Previous GRB neutrino analyses 

There have been many complementary GRB neutrino searches 

reported by IceCube [32,35–38] , ANTARES [33,39] , RICE [40] , and 

ANITA [34] . 

IceCube [41] is an in-ice, ∼ 1 km 

3 optical-Cherenkov detector 

located at the South Pole. It has reported the most stringent limit 

on the GRB quasi-diffuse neutrino flux from 10 5 to 10 7 GeV [36] . 

IceCube initially used an analytical GRB neutrino model by Guetta 

et al. [9] , based on the Waxman–Bahcall (WB) model [42] , but now 

uses a numerical flux calculation [37,38] that is compatible with 

the one used in the present analysis, NeuCosmA [43] . 

ANTARES [44] is an optical-Cherenkov detector, similar to Ice- 

Cube, but located in the Mediterranean Sea, and instrumenting a 

volume of only ∼ 0.03 km 

3 . It is sensitive to a similar range of 

neutrino energies as IceCube. The latest GRB neutrino analysis by 

ANTARES was based on NeuCosmA; its GRB neutrino flux limit is 

approximately an order of magnitude weaker than the limit from 

IceCube [39] . 

RICE [45] was an in-ice radio-Cherenkov detector located in the 

South Pole, operational until 2011, that instrumented a volume of 

∼ 25 km 

3 . The GRB neutrino analysis by RICE was based on an 

analytical neutrino flux model and set individual fluence limits on 

five GRBs, from 5 × 10 7 to 5 × 10 8 GeV [40] . 

ANITA [46] is a balloon-borne Antarctic experiment that has 

flown three times under the NASA long-duration balloon program, 

searching for neutrinos using the radio-Cherenkov technique. From 

an altitude of ∼ 37 km, ANITA can monitor an extremely large vol- 

ume of Antarctic ice, ∼ 1.6 × 10 6 km 

3 [47] . The ANITA GRB neu- 

trino analysis [34] was based on the analytic WB GRB neutrino 

flux model [42] and set fluence limits for 12 individual GRBs that 

occurred in low-background analyzable time periods during its 31- 

day flight. ANITA provided the most recent GRB neutrino fluence 

limit from 10 8 to 10 12 GeV. The limited livetime of a balloon ex- 

periment constrains the maximum number of analyzable GRBs for 

ANITA and thus they could not set a quasi-diffuse flux limit, but 

instead set fluence limits for each individual GRB. 

3. The ARA instrument 

The full proposed ARA detector, ARA37, would consist of 37 sta- 

tions spaced 2 km apart at a depth of 200 m. The first three de- 

sign ARA stations (A1, A2, A3) were deployed in the 2011–2012 and 

2012–2013 seasons, while a prototype Testbed station, which we 

used for this GRB neutrino search, was deployed in the 2010–2011 

season. 

Fig. 1 shows the layout of the Testbed with the positions of the 

five boreholes. Boreholes 1 through 3 and Borehole 5 each contain 

a pair of antennas consisting of one vertically polarized (Vpol) bi- 

cone antenna and one horizontally polarized (Hpol) bowtie-slotted 

cylinder antenna. Borehole 6, instead, has two Hpol quad-slotted 

cylinder (QSC) antennas which were deployed in the Testbed to 

test the antenna design before deploying them in the deep sta- 

tions. All borehole antennas have bandwidths from 150 MHz to 

850 GHz. For the trigger and data analysis, we utilized only anten- 

nas in Boreholes 1–3 and 5. The maximum depth of the borehole 

antennas in the Testbed is approximately 30 m. There are also 

three calibration pulser VPol and HPol antenna pairs that were in- 

stalled at a distance of ∼ 30 m from the center of the Testbed 

array to provide in situ timing calibration and other valuable cross 

checks related to simulations and analysis. A more detailed de- 

scription of the Testbed station is in Refs. [27,29] . 

4. Analysis tools 

In order to estimate the expected GRB neutrino spectra, we 

use the NeuCosmA GRB neutrino model. In order to estimate the 
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Fig. 1. Schematic of the ARA Testbed station. The borehole numbers are indicated 

next to their locations. Boreholes 1 through 3 and Borehole 5 each have a pair of 

Vpol and Hpol antennas while Borehole 6 has two Hpol antennas (Borehole 4 was 

not filled). The maximum depth of the borehole antennas is ∼ 30 m. 

efficiency of the ARA Testbed, we use AraSim, the ARA detector 

simulation software. Highlights of NeuCosmA and AraSim are de- 

scribed in the following sections. 

4.1. GRB Neutrino model: NeuCosmA 

NeuCosmA [43,48] is a state-of-the art computer code to calcu- 

late the neutrino fluence from cosmic accelerators such as GRBs. 

It performs detailed and fast computation of neutrino production 

in photohadronic p γ interactions, via �-resonance, higher reso- 

nances, K 

+ decay channels, multi-pion processes, and direct pro- 

duction modes, and includes energy-loss processes of the secon- 

daries and neutrino flavor oscillations during propagation to Earth. 

NeuCosmA provides fast calculation of neutrino yields beyond sim- 

ple analytical estimates, which are typically limited in the num- 

ber of production modes. For each GRB, it provides the energy- 

dependent flavor composition of the neutrino fluence at Earth, i.e. , 

the ratio of each flavor to the total fluence, ( f e , �: f μ, �: f τ , �) . 

We use NeuCosmA with model parameter values inferred from 

the observed gamma-ray signal of a GRB to calculate its neutrino 

spectrum. These parameters are T 90 (the time in which 90% of 

the gamma-ray fluence is collected), α and β (spectral indices of 

the Band function [49] at low and high energies), E peak (the peak 

energy of the gamma-ray spectrum), F γ (the integrated gamma- 

ray fluence), E min and E max (the minimum and maximum en- 

ergy of the fluence), and z (redshift). We extract parameter values 

from the Gamma-ray Coordinates Network (GCN) catalog [50,51] . 

For unmeasured parameters, we use their default values from the 

GRB-web database [32,52] . For all GRBs, we assume that the bulk 

Lorentz factor of the fireball � = 316 , the energy in electrons and 

photons is equal to the energy in magnetic fields, and the ratio of 

energy in protons to energy in electrons — the baryonic loading —

f p = 10 [32,43] . These are the same choices as in previous analyses 

[32,35–39] . 

Synchrotron energy losses of secondary π+ , π−, π0 , and μ± in 

the magnetic field of the source [53,54] affect the shape and flavor 

composition of the neutrino fluence [55] . The onset of synchrotron 

losses for muons, pions, and kaons, at progressively higher ener- 

gies, leads to GRB neutrino spectra that, in general, exhibit three 

distinctive kinks; see curves for individual bursts in Fig. 5 . These 

effects, together with the energy dependence of the proton mean 

free path and the interaction of protons with the full photon spec- 

trum, result in a quasi-diffuse neutrino flux — the “numerical fire- 

ball calculation” in Ref [43] . — that is up to one order of magnitude 

smaller than the analytical estimates [9] used in the first IceCube 

GRB neutrino search [32] . 

Contributions from different modes are performed via “re- 

sponse functions,” which contain the relevant kinematics, mul- 

tiplicities, and cross sections, encoded in fast-access look-up ta- 

bles. This method is fast and accurate up to PeV energies. At 

higher energies, relevant for the present analysis, this approach has 

problems treating the rising complexity in interaction final states, 

and QCD-based Monte Carlo methods like those implemented in 

SOPHIA [56] would give more accurate results. However, we ex- 

pect that the impact of the particle-physics uncertainties is smaller 

than that coming from ambiguities in the astrophysical modeling 

of GRBs, even after reduction of errors due to averaging over the 

distribution of astrophysical parameter values. We discuss these ef- 

fects more below. We use NeuCosmA in the entire energy range of 

our analysis to obtain limits that are methodologically comparable 

to those found by other experiments. 

Our neutrino production model assumes that protons are per- 

fectly confined by the magnetic field at the source, and that only 

the neutrons produced in p γ interactions contribute to the flux 

of UHECRs. This “neutron model” results in a strong correspon- 

dence between the UHECR flux and the neutrino flux, which is in 

tension with the non-observation of neutrinos from GRBs by Ice- 

Cube [32,35–37] . All previous GRB neutrino searches have assumed 

the neutron model, so we adopt it to allow direct comparison of 

our results to theirs. We have not considered neutrino production 

models where protons can leak out of the source without inter- 

acting. They can yield neutrino fluxes lower by as much as an or- 

der of magnitude [57,58] . So can models where multiple shell colli- 

sions occur in the jet, each one with different emission parameters 

[59–61] . 

4.2. Detector simulation: AraSim 

AraSim [29] is a Monte-Carlo simulation software package used 

within the ARA Collaboration to simulate neutrino signals as they 

would be observed by the detector. It simulates the full chain 

of neutrino events, such as the passage of the neutrino through 

the Earth, radio-Cherenkov emission, the path and response of 

the emitted signal in the ice, and the trigger and data acquisition 

mechanisms of the detector, as described below. 

AraSim was used in this search to model the neutrino interac- 

tions and detector response in the same manner that it was used 

in the ARA Testbed diffuse search, but we provide relevant details 

here for completeness. AraSim generates neutrino events with uni- 

formly distributed neutrino directions and interaction point loca- 

tions chosen with a uniform density in the ice. At each energy, 

we take the average flavor ratio of all GRBs given by NeuCosmA, 

weighted by their relative fluence. To properly account for the di- 

rectional dependence of the sensitivity, the event is weighted by 

the probability that the neutrino survived its passage through the 

Earth and reached the interaction point. Once a neutrino inter- 

action location is chosen in the ice, an in-ice ray tracing algo- 

rithm (RaySolver) derives multiple source-to-target ray-trace so- 

lutions giving signal arrival times. From each ray-trace solution, 

the radio-Cherenkov signal, including a phase response, is then 

calculated with a custom parameterized radio-Cherenkov emission 

model inspired by Ref [62] . The modeled signal is generated for 

both the hadronic and electromagnetic portions of the shower sep- 

arately, as they have different characteristic shower profiles. We do 

not currently model the Landau–Pomeranchuk–Migdal (LPM) [63–

65] effect in our RF emission model. Instead, we apply a correction 

factor to the effective volume for each energy bin based on the 
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impact of the LPM effect on the sensitivity, using the simpler RF 

emission model from Ref. [66] . 

We then apply detector properties to the signal, such as an- 

tenna responses, amplifier and filter responses, noise figure, and 

trigger mechanism. The antenna, amplifier, and filter responses are 

modeled based on simulation and measurements, while the noise 

figure and the trigger mechanism are calibrated to the Testbed 

data. When a simulated event passes the trigger, the waveforms 

are written into the same format as the data so that the simulated 

events can be analyzed with identical software. 

5. Data analysis 

For this GRB neutrino search, we selected for analysis only 

those GRBs that occurred during clean data-taking periods and in a 

region of the sky that is observable by our detector. After the GRBs 

are selected, we use the same selection criteria for the RF neutrino 

candidate events as in the ARA diffuse neutrino search [29] , but 

we search in a narrow time window around each GRB event, and 

thus we can loosen some cuts. We use a blinding technique that 

draws on both the ones used for the ARA diffuse neutrino search 

and the ANITA GRB neutrino analysis [34] . 

Our analysis consists of three stages. First, we use a 10% subset 

from the full ARA Testbed data set for the preliminary background 

analysis. To estimate the background, we use two 55 min time 

windows on either side of each GRB event that excludes a 10 min 

signal window centered on that event. We optimize the cuts in the 

background analysis windows for the best expected limit in the 

signal windows. Second, we look at the number of events in the 

background analysis windows in the remaining 90% of the data set 

to check the consistency with the estimate based on the 10% sub- 

set. Third, we search for neutrino events in the signal windows in 

the entire (10%+90%) data set (note that the signal windows in the 

10% set were not used for background studies). 

5.1. GRB selection 

We started with the 589 GRBs that occurred from January 2011 

to December 2012 over the entire sky. For this analysis, we se- 

lected those that occurred during periods of clean data-taking and 

that fell within the field of view of our detector. We used the Ice- 

Cube GRB catalog [52] , which is based on the GCN [50,51] , to find 

GRBs during the time period of interest. 

From the 589 GRBs, we first rejected GRBs that failed the Ef- 

fective Livetime Cuts. The Effective Livetime Cuts consist of three 

cuts which require a low background level and stable data-taking. 

The first cut is a simple time window cut which rejected GRBs 

that occurred during periods of high levels of activity at the South 

Pole station in the 2011 to 2013 seasons, in order to avoid strong 

anthropogenic backgrounds: for each year, we rejected GRBs that 

occurred from October 22nd to February 16th. The second cut re- 

quires that the data is not contaminated by any strong continuous 

waveform (CW) source by rejecting any GRBs that occurred within 

an hour of any run where 10% or more events are highly correlated 

with each other. The third and final timing cut is a livetime cut 

which requires the detector to be running and stably storing data 

within an hour of each GRB. The livetime represents the fraction 

of a second that the trigger was available. If there was any second 

when the livetime of the detector was lower than 10% during the 

hour before or after a GRB, we reject that GRB from our analysis. 

After applying the Effective Livetime Cuts, 257 GRBs survived from 

224 days of analyzable period of data taking. 

To these surviving GRBs, we applied an additional cut which 

requires that the GRB should be included in the field of view of 

the Testbed. In order to define a field of view for the Testbed, we 

Fig. 2. Expected event spectrum from a simulated neutrino sample generated from 

the fluences of the 257 GRBs that survived the Effective Livetime Cuts. Here we 

have applied the same analysis cuts that are used for the ARA diffuse neutrino 

search [29] . The ARA Testbed is most sensitive at ∼ 10 7.5 GeV for these NeuCosmA- 

generated GRB neutrino fluences. 

first found the energy bin which is the most sensitive to neutrinos 

from GRBs. 

Fig. 2 is the expected event spectrum from the 257 GRBs after 

applying analysis cuts that are used for the diffuse neutrino search 

[29] . It shows that the Testbed is most sensitive to NeuCosmA- 

generated neutrino fluences from these GRBs at ∼ 10 7.5 GeV. We 

used a simulation set with the full range of incident angles of neu- 

trinos at 10 7.5 GeV, and obtained the effective volume as a function 

of neutrino direction. 

The effective volume V eff is obtained for each energy bin and 

each neutrino direction bin by 

V eff = 

V gen 

N thrown 

N triggered ∑ 

i =1 

w i , (1) 

where V gen is a volume of ice where ice-neutrino interactions are 

generated uniformly, N thrown is the total number of events thrown 

( ∼ 10 6 for each simulation set), and 

∑ N triggered 

i =1 
w i is the weighted 

sum of the number of events that triggered. The weight w i is the 

probability that the i th neutrino was not absorbed in the Earth, 

given its direction and the position of the interaction 

Fig. 3 shows the effective volume versus zenith angle of the 

neutrino travel direction. The field of view of the Testbed is defined 

as the Full Width Half Maximum (FWHM) of the effective volume 

(arrow shown in Fig. 3 ), which is −0 . 4 < cos θν < 0 . 05 . Earth ab- 

sorption reduces the effective volume at high cos θν (right-hand 

side of the plot), while the shadowing effect from the ray-tracing 

in ice causes the cut-off at low cos θν (left-hand side of the plot) 

[29] . 

Fig. 4 shows the distribution of the 57 GRBs that remain after 

applying a cut requiring that each GRB is within the field of view. 

They are shown in Testbed local coordinates, where φ = 0 points 

along the direction of ice flow and cos θ = 0 points along the tan- 

gent to the surface of the geoid shape of the Earth. 

Fig. 5 shows the fluences of all 57 selected GRBs generated with 

the NeuCosmA software. Among them, one was brighter than the 

others: GRB110426A. Its fluence was higher than the others by an 

order of magnitude for energies above 10 7 GeV. Its location on 

the sky is marked as a cross in Fig. 4 and its parameters values 

are shown in Table 1 . The long duration and high spectral indices 

of GRB110426A made its expected neutrino fluence significantly 

higher than for other GRBs at energies above 10 7 GeV. 
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Table 1 

GRB110426A parameter values. Values in bold text are not properly measured or reported and therefore default 

values are used [52] . 

GRB T 90 [sec] α β E peak [keV] F γ [erg cm 

−2 ] E min [MeV] E max [MeV] z 

GRB110426A 376 .05 2 .28 3 .28 200 4 . 54 × 10 −5 0 .01 1 2 .15 

Fig. 3. Effective volume of the ARA Testbed as a function of the zenith angle ( θν ) of 

the neutrino travel direction with a neutrino energy of 10 7.5 GeV. The field of view 

is defined as the Full Width Half Maximum (FWHM) of the effective volume, which 

is −0 . 4 < cos θν < 0 . 05 . This field of view covers ∼ 20% of the sky. A vertically up- 

going neutrino has cos θν = 1 . The shape of this distribution is described in the text. 

Fig. 4. The distribution map of 57 selected GRBs in Testbed local coordinates. The 

band in the map is the field-of-view cut range defined in Fig. 3 . Note that cos θ in 

this map is the direction of the GRB while cos θν in Fig. 3 is the travel direction of 

the neutrino. 

5.2. Neutrino search optimization 

This analysis uses the same set of cuts as in the Interferometric 

Map Analysis in the ARA diffuse neutrino search [29] . The analysis 

uses relative timing information to reconstruct the location of the 

source of the RF emission. The interferometric map is constructed 

from the sum of cross-correlations between the different pairs of 

antennas — a strong peak on the map indicates a high correla- 

tion among waveforms after correcting for the arrival times of the 

signals. We perform an optimization of the cuts for this analysis, 

which differs from the diffuse search by using the summed GRB 

fluence over the 57 GRBs for the expected signal, and only search- 

ing in the 10 min window surrounding each GRB. 

When optimizing our cuts, we use average, energy-dependent 

flavor ratios at Earth, which are calculated using the individual 

Fig. 5. The fluences of the 57 selected GRBs (thin solid curves and dashed curve) as 

generated by NeuCosmA and their sum fluence (thick curve). One GRB is brighter 

than the others by an order of magnitude above 10 7 GeV (GRB110426A, dashed 

curve). 

flavor ratios of each GRB in our sample, as output by NeuCosmA 

— the contribution of each GRB is weighted by its relative neu- 

trino fluence. This is important, since electron neutrinos are more 

likely than other flavors to pass our trigger and analysis cuts due 

to charged-current events depositing the full neutrino energy in 

the particle shower. See Section 6.2 . 

Among the set of analysis cuts described in the diffuse neutrino 

search, the Delay Difference Cut, the Reconstruction Quality Cuts, 

and the Peak/Correlation Cut were re-optimized for this search. 

The three cuts that were re-optimized are all based on the qual- 

ity of the directional reconstruction while the rest of the cuts are 

designed to reject specific types of backgrounds such as CW and 

calibration pulser events. The Delay Difference Cut ensures that 

the reconstruction direction derived from all the borehole anten- 

nas of the same polarization is consistent with the delay observed 

between the signals in the two antennas with the strongest sig- 

nals. The Reconstruction Quality Cuts ensure that the event can 

be characterized by a single well-defined pointing direction on 

the interferometric reconstruction map. The Peak/Correlation Cut 

requires that events have strong correlation between the signal 

strength and the cross-correlation value from the interferometric 

map, which is expected from impulsive events. 

A total of four cut parameters or options from these three cuts 

are allowed to vary to give the best expected limit on the domi- 

nant GRB event from the NeuCosmA model. For the Delay Differ- 

ence Cut, we only consider whether to remove the cut, since it is 

largely redundant with other cuts. The Reconstruction Quality Cuts 

have two cut parameter values, A peak and A peak / A total , which ensure 

that the reconstruction direction is well-defined and unique, re- 

spectively. Parameter A peak is the maximum allowed area in square 

degrees on the interferometric map surrounding the best recon- 

struction direction where the correlation remains high. Parame- 

ter A peak / A total is the maximum allowed ratio between the high- 

correlation area around the best reconstruction direction and the 

high-correlation area from the entire map. The last parameter that 

was included in the optimization was the Peak/Correlation Cut 

Value, which is a unitless parameter that defines the minimum 



12 P. Allison et al. / Astroparticle Physics 88 (2017) 7–16 

Fig. 6. The differential distribution of events found in the background analysis win- 

dows of the 10% data set as a function of Peak/Correlation Cut Value after all other 

cuts have been applied. This distribution is fitted with an exponential function 

(shown by the line) which is used to extrapolate the number of expected back- 

ground events for a higher Peak/Correlation Cut Value. The optimized value is 7.6. 

required value of a linear combination of the signal strength and 

the peak correlation value on the interferometric map. 

The expected number of neutrinos from each GRB and the back- 

ground expectation based on the time of each GRB are obtained 

using the re-optimized cuts. For each GRB, we use its direction and 

predicted energy-dependent flavor ratio to obtain the analysis-level 

effective area of the Testbed as a function of energy. The effective 

area A 

i 
eff 

(E) of the i th GRB is obtained from the effective volume 

using the assumption that the dimensions of the detector are sig- 

nificantly smaller than the interaction lengths [67] : 

A 

i 
eff (E) ≈ V 

i 
eff 

(E) 

l int (E) 
, (2) 

where V i 
eff 

(E) is the effective volume, calculated using Eq. (1), and 

l int ( E ) is the neutrino interaction length. The latter is given by 

l int (E) = 

m N 

σν−ice (E) ρice 

, (3) 

where ρ ice is the density of ice, σν−ice (E) is the cross-section of 

neutrino-nucleon interactions derived in Ref. [68] , and m N is the 

nucleon mass. 

The total expected number of neutrino events is 

N 

total 
exp = 

57 ∑ 

i =1 

(∫ 
d log 10 E · E F i (E ) · A 

i 
eff (E ) · ln (10) 

)
, (4) 

where i is the index of the GRB (total 57 GRBs) and F i ( E ) is the 

neutrino fluence [ GeV 

−1 cm 

−2 ] of the i th GRB . The factor ln (10) 

in Eq. (4) is obtained by substituting linear energy integration for 

logarithmic integration, dE /E = d ln (E ) = ln (10) · d log 10 (E) . 

Fig. 6 shows the differential distribution of background events 

as a function of the final Peak/Correlation cut. We estimate the 

expected number of background events by fitting an exponential 

function to this distribution. 

As described at the beginning of the section, we derive the 

background estimate from the background analysis window for 

each GRB, which is distinct from the signal window. We consider 

the background analysis window to be the hour on either side 

of each GRB time, minus the 10 min surrounding each GRB. The 

55 min on either side of a GRB (total 110 min) is a background 

analysis window and 5 min before and after the GRB is a neutrino 

signal window. A 10 min period centered around the middle of the 

T 90 window should be sufficient to encompass the expected emis- 

sion period for all the GRBs examined in this study if we assume 

that gamma rays and neutrinos are produced simultaneously. The 

110 min background period provides sufficient statistics for a study 

of the background around the times of each GRB. This is the same 

method used in the ANITA GRB analysis [34] . 

Using the data in the background analysis windows, we opti- 

mize our analysis cuts to give us the best expected limit, and, us- 

ing these optimized cuts, we obtain the expected number of events 

from the background and signal windows. We compute the best 

expected 90% confidence level (C.L.) upper limit F UL on the neu- 

trino fluence by minimizing 

F UL (E) = F sum 

(E) · N UL 

N exp 
, (5) 

where F sum 

( E ) is the sum of the neutrino fluences from the 57 

GRBs, N exp is the expected number of neutrinos that pass the cuts, 

and N UL is the 90% C.L. upper limit on the number of signal events 

given the number of expected background events. 

Table 2 summarizes the final set of cut parameters after the op- 

timization. After the optimization, we expect 0.072 events in the 

signal windows in the entire data set. This background expecta- 

tion in the signal windows is at approximately the same level as 

the expected background events in the diffuse neutrino search, but 

now we achieve a factor of 2.4 improvement in the overall anal- 

ysis cut efficiency for the summed fluence from the 57 GRBs due 

to changing the analyzable time by a factor of 566. To obtain the 

background expectations for the background windows in the 10% 

and 90% sets, we simply scale the 0.072 events by the livetime in 

each sample. In the background analysis windows in the 10% sub- 

set, we expect 0.079 background events and no events survived. 

In the second stage of analysis, we look at the number of events 

in the background analysis windows in the remaining 90% of the 

data set. This is to make sure that the background estimation de- 

rived from the 10% subset is consistent with what we see in the 

remaining 90% of the data. In the 57 GRB background analysis win- 

dows in the 90% data set we expected 0.72 events and two events 

survive. 

In the final stage of the analysis, we search in the entire data 

set for neutrino events in the signal windows surrounding the 57 

GRBs over a total of 570 minutes. We used the same optimized 

analysis cuts defined in the first analysis stage. 

6. Results 

6.1. Upper limits on GRB neutrinos 

We expected 0.072 background events in the signal region in 

the entire data set and found no events. From NeuCosmA, the ex- 

pected number of neutrino events from the 57 GRBs is 2 . 4 × 10 −5 . 

From simulation, the analysis efficiency for triggered events from 

the fluence calculated for GRB110426A is 6%. We placed a 90% C.L. 

limit on the combined fluence from the 57 GRBs. 

Fig. 7 shows the total, or stacked, fluence from the 57 GRBs cal- 

culated with NeuCosmA, and the GRB neutrino fluence limit that 

we set from 10 7 to 10 10 GeV. At lower energies, the ARA Testbed 

sensitivity drops, and 10 10 GeV is the maximum energy with which 

NeuCosmA emits neutrinos. 

In order to compare our limit with those from other experi- 

ments that used a different set of GRBs for their analyses, we also 

provide the inferred quasi-diffuse all-flavor neutrino flux limit. This 

assumes that the average fluence of the 57 analyzed GRBs is repre- 

sentative of the average fluence from GRBs for any other extended 

period. With this assumption, the quasi-diffuse neutrino flux limit 

E 2 � is 

E 2 � = E 2 F × 1 

4 π

˙ N 

0 
GRB 

N GRB 

, (6) 

where E 2 F is the fluence limit, N GRB = 57 is the number of an- 

alyzed GRBs, and 

˙ N 

0 
GRB 

is the average number of GRBs that are 
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Table 2 

Comparison of cut parameter values of the analysis. See text for details.. 

Cut Delay difference cut Reconstruction quality cut Peak/Correlation cut 

Parameter On/Off A peak A total A peak Peak/Corr. cut value 

Diffuse Neutrino search On < 50 deg 2 < 1 .5 > 8 .8 

GRB Neutrino search Off < 140 deg 2 < 16 .4 > 7 .6 

Fig. 7. The 90% upper limit on the UHE GRB all-flavor neutrino fluence from 57 

GRBs. Total fluence from NeuCosmA for the 57 GRBs is shown with the shaded area 

and the limit from the ARA Testbed above 10 7 GeV is shown with the solid curve. 

Fig. 8. The ARA-Testbed quasi-diffuse all-flavor flux limit. We include limits from 

IceCube [36] and ANTARES [39] for comparison; we have multiplied them by a fac- 

tor of 3 to make them all-flavor. IceCube recently published a search for neutrinos 

from GRBs based on four years of data [37] , but did not include a limit on the 

quasi-diffuse flux. Preliminary estimates indicate that the latest result would im- 

prove upon the IC40+59 limit shown here by about an order of magnitude. The 

ARA37 limit is the trigger-level sensitivity based on scaling the Testbed using fac- 

tors described in the diffuse neutrino search [29] . For reference, several diffuse lim- 

its have been included (in grey): the Testbed diffuse flux limit [29] , the ARA 2- 

station diffuse limit [30] , and the 2012 Extremely High Energy (EHE) diffuse limits 

from IceCube [69] . The points in grey represent the fluxes from the IceCube high- 

energy starting events (HESE) using 3 years of IceCube data [70] . For comparison, 

the Waxman-Bahcall upper bound on the neutrino flux from UHECR thin sources is 

3 . 4 × 10 −8 GeV cm 

−2 s −1 sr −1 [42,71] . 

potentially observable by satellites per unit time [35] , and is cho- 

sen as 667/year to be consistent with the IceCube and ANTARES 

GRB neutrino searches [33,36] . 

Fig. 8 shows the quasi-diffuse neutrino flux limit from ARA and 

other experiments. Our limit is the first UHE GRB neutrino quasi- 

diffuse flux limit at energies above 10 7 GeV. The sensitivity of Ice- 

Cube extends to this energy region, but their quasi-diffuse limit is 

published only below 10 7 GeV, where their sensitivity is greatest. 

6.2. Effects of uncertainties and model parameters 

Our calculations are unavoidably affected by uncertainties in 

the values of astrophysical parameters — on which we expand be- 

low — and of particle-physics parameters, including cross sections, 

multiplicities, and lepton mixing parameters. Astrophysical uncer- 

tainties affect each source in a different way, and, in a source sam- 

ple, partially average out. Particle-physics uncertainties systemat- 

ically affect the fluxes from all sources in the same way, but are 

considerably smaller than astrophysical uncertainties; see, e.g. , Fig. 

19 in Ref. [72] for the effect of the uncertainty on the mixing pa- 

rameters. We have therefore assumed in our calculations the cen- 

tral values of the particle-physics parameters. 

In the calculation of our limits, we assumed nominal values of 

the astrophysical model parameters. We now comment on the ef- 

fect of varying these values. Ref. [72] showed the effect on the 

shape and flavor composition of the diffuse GRB neutrino flux of 

assuming distributions of values for the magnetic field intensity, 

bulk Lorentz factor, and shape of the source photon spectrum. 

In stacking analyses, the combined uncertainties on astrophysical 

model parameters can lower or raise the quasi-diffuse flux by one 

order of magnitude [43] . The baryonic loading is particularly poorly 

known; in our analysis, we adopted the commonly used value of 

10 for all bursts [32,43] . In reality, it could be lower or higher by 

a factor of 10. Since the baryonic loading linearly scales the neu- 

trino flux, this would shift the flux down or up by one order of 

magnitude [43] . 

Another source of uncertainty is the finite size of the GRB sam- 

ple used to derive the quasi-diffuse flux. For instance, the uncer- 

tainty associated to the discrete sampling of the underlying red- 

shift distribution of GRBs ranges from 56%–72%, for a sample of 

50 bursts (the present analysis uses 57 bursts), to 25%–28%, for a 

sample of 10 0 0 bursts (90% C.L.) [72] . 

While we have considered GRB jets whose baryonic content 

is dominated by protons, GRBs might be able to synthesize [73–

75] and accelerate [59,60,76–79] nuclei. If nuclei can reach ener- 

gies as high as protons, neutrino fluxes are comparable [59] ; oth- 

erwise, neutrino yields from nuclei could be up to two orders of 

magnitude lower [77] . An exploration of GRB neutrino limits as- 

suming different jet mass compositions is beyond the scope of this 

paper. 

Alternative fireball emission models, such as sub-photospheric 

[80–85] and magnetic reconnection [86–89] models, may result in 

quasi-diffuse neutrino fluxes up to one order of magnitude lower 

than the flux from the internal-collision model we adopted [37,38] . 

While our results in Figs. 7 and 8 use average, energy- 

dependent flavor ratios at Earth (see Section 5.2 ), we considered 

the impact of variations in flavor ratios. In Ref. [90] , it is argued 

that for (1: 2: 0) S flavor ratios at the source, high-energy neutri- 

nos from astrophysical sources can reach Earth with ratios ( x : 1: 

1) � where 0.57 < x < 2.5, and Ref. [91] finds an electron fraction 

between 20% and 59%, corresponding to the range 0.5 < x < 2.9. 

For (1: 1: 1) � ratios in the incident flux, at the trigger level the 

ratios of detected neutrinos become (2: 1: 1), and, at the analysis 

level, they become (6: 1: 1). Due to this effect, neutrino fluxes with 
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flavor ratios of (0.5: 1: 1) � and (2.9: 1: 1) �, with the same all- 

flavor normalization, would result in a 25% lower and 50% higher 

number of neutrinos passing the trigger and analysis cuts, re- 

spectively, and a corresponding weakening or strengthening of the 

limits. 

7. Future prospects 

For future analyses using two ARA deep stations, we expect to 

have at least a factor of 6 improvement in sensitivity compared 

to this one using Testbed data assuming the same analysis with 

similar cuts. There is a factor of ∼ 3 expected increase going from 

the shallow Testbed station to a 200 m deep-station and another 

factor of ∼ 2 for the number of deep stations currently operat- 

ing. In addition, we plan to increase the number of deep stations. 

Fig. 8 shows the expected ARA37 trigger-level limit based on these 

and other improvement factors similar to those described for the 

diffuse neutrino search [29] . Below, we motivate an expectation for 

a high analysis efficiency in future ARA GRB analyses. Furthermore, 

the implementation of a phased array trigger design, as described 

in Ref [92] , currently funded for an initial deployment in 2017–

2018, would decrease the trigger threshold and improve the sensi- 

tivity to neutrinos from GRBs. 

In the future, by restricting our GRB searches in direction (so as 

not to include the South Pole direction), and by improving the way 

we reject CW backgrounds, we expect that we may eliminate all 

cuts but those designed to reject thermal noise. ARA has the abil- 

ity to reconstruct the directions of RF signals, and we plan to de- 

velop the capability of reconstructing neutrino directions also, us- 

ing polarization and spectral information. In addition, we are work- 

ing to replace our CW cuts with filters. Keeping only cuts designed 

to reject thermal noise would leave the Reconstruction Quality Cut 

and the Peak/Correlation Cut as those with an important impact on 

our sensitivity. With only these cuts, we find that the analysis ef- 

ficiency for the dominant GRB fluence in this paper increases from 

6% to 14%, a factor of 2.3 increase beyond the increases mentioned 

above due to expansion of the array. 

Improvements in the reconstruction by using an algorithm that 

solves for event distance and additional antennas in design sta- 

tions are expected to lead to improvements in the analysis effi- 

ciency by an additional factor of a few. Although the Reconstruc- 

tion Quality Cut was significantly relaxed here compared to the dif- 

fuse analysis [29] , its efficiency against simulated triggered events 

was ∼ 30%, primarily rejecting events with a low signal-to-noise 

ratio (SNR). Improvements to the reconstruction method under de- 

velopment will be able to increase the efficiency of reconstruct- 

ing these low-SNR events. Additionally, in the design stations, the 

number of pairs of antennas of each polarization contributing to 

the interferometric map increases from 6 to 28, which is expected 

to improve the efficiency, in particular, by giving low-SNR events a 

higher peak correlation value to differentiate it from noise. 

8. Conclusions 

Using data from the ARA Testbed station from January 2011 to 

December 2012, we have searched for UHE neutrinos from GRBs. 

We selected 57 GRBs that occurred during this period within the 

field of view of the Testbed. We searched for GRB neutrinos in a 

time window around each burst. The resulting reduced background 

allowed us to loosen our analysis cuts and improve our analysis ef- 

ficiency for neutrinos from the 57 GRBs by a factor of 2.4. The GRB 

neutrino spectra were calculated using NeuCosmA, an advanced 

high-energy astrophysical neutrino fluence generator. 

We found zero events passing the cuts for our search, which is 

consistent with the expectation. We obtained a GRB neutrino flu- 

ence limit and the first quasi-diffuse GRB neutrino flux limit for 

energies above 10 7 GeV. 

Future analyses from two ARA deep stations are expected to 

have at least a factor-of-6 improvement in sensitivity compared 

to the present analysis with the ARA Testbed, assuming the same 

cuts. Another factor of about 10 is feasible from planned develop- 

ments in reconstruction and CW filtering capabilities at the analy- 

sis stage with the current deep station design. 
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