3,275 research outputs found

    Constraining the Solution to the Last Parsec Problem with Pulsar Timing

    Get PDF
    The detection of a stochastic gravitational-wave signal from the superposition of many inspiraling supermassive black holes with pulsar timing arrays (PTAs) is likely to occur within the next decade. With this detection will come the opportunity to learn about the processes that drive black-hole-binary systems toward merger through their effects on the gravitational-wave spectrum. We use Bayesian methods to investigate the extent to which effects other than gravitational-wave emission can be distinguished using PTA observations. We show that, even in the absence of a detection, it is possible to place interesting constraints on these dynamical effects for conservative predictions of the population of tightly bound supermassive black-hole binaries. For instance, if we assume a relatively weak signal consistent with a low number of bound binaries and a low black-hole-mass to galaxy-mass correlation, we still find that a non-detection by a simulated array, with a sensitivity that should be reached in practice within a few years, disfavors gravitational-wave-dominated evolution with an odds ratio of ∌\sim30:1. Such a finding would suggest either that all existing astrophysical models for the population of tightly bound binaries are overly optimistic, or else that some dynamical effect other than gravitational-wave emission is actually dominating binary evolution even at the relatively high frequencies/small orbital separations probed by PTAs.Comment: 14 pages, 8 figure

    Gravity Waves, Chaos, and Spinning Compact Binaries

    Get PDF
    Spinning compact binaries are shown to be chaotic in the Post-Newtonian expansion of the two body system. Chaos by definition is the extreme sensitivity to initial conditions and a consequent inability to predict the outcome of the evolution. As a result, the spinning pair will have unpredictable gravitational waveforms during coalescence. This poses a challenge to future gravity wave observatories which rely on a match between the data and a theoretical template.Comment: Final version published in PR

    Prospects for observing ultra-compact binaries with space-based gravitational wave interferometers and optical telescopes

    Get PDF
    Space-based gravitational wave interferometers are sensitive to the galactic population of ultra-compact binaries. An important subset of the ultra-compact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multi-messenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher Information Matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 square degrees and bright enough to be detected by a magnitude limited survey. We find, depending on the choice of GW detector characteristics, limiting magnitude, and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.Comment: 6 pages, 3 figures Updated to include new results. Submitted to MNRA

    Characterizing the Galactic Gravitational Wave Background with LISA

    Full text link
    We present a Monte Carlo simulation for the response of the Laser Interferometer Space Antenna (LISA) to the galactic gravitational wave background. The simulated data streams are used to estimate the number and type of binary systems that will be individually resolved in a 1-year power spectrum. We find that the background is highly non-Gaussian due to the presence of individual bright sources, but once these sources are identified and removed, the remaining signal is Gaussian. We also present a new estimate of the confusion noise caused by unresolved sources that improves on earlier estimates.Comment: 32 pages, 14 figures. Version to appear in PR

    Optical Identification of Close White Dwarf Binaries in the LISA Era

    Full text link
    The Laser Interferometer Space Antenna (LISA) is expected to detect close white dwarf binaries (CWDBs) through their gravitational radiation. Around 3000 binaries will be spectrally resolved at frequencies > 3 mHz, and their positions on the sky will be determined to an accuracy ranging from a few tens of arcminutes to a degree or more. Due to the small binary separation, the optical light curves of >~ 30% of these CWDBs are expected to show eclipses, giving a unique signature for identification in follow-up studies of the LISA error boxes. While the precise optical location improves binary parameter determination with LISA data, the optical light curve captures additional physics of the binary, including the individual sizes of the stars in terms of the orbital separation. To optically identify a substantial fraction of CWDBs and thus localize them very accurately, a rapid monitoring campaign is required, capable of imaging a square degree or more in a reasonable time, at intervals of 10--100 seconds, to magnitudes between 20 and 25. While the detectable fraction can be up to many tens of percent of the total resolved LISA CWDBs, the exact fraction is uncertain due to unknowns related to the white dwarf spatial distribution, and potentially interesting physics, such as induced tidal heating of the WDs due to their small orbital separation.Comment: 4 pages, 2 figure

    Does a relativistic metric generalization of Newtonian gravity exist in 2+1 dimensions?

    Get PDF
    It is shown that, contrary to previous claims, a scalar tensor theory of Brans-Dicke type provides a relativistic generalization of Newtonian gravity in 2+1 dimensions. The theory is metric and test particles follow the space-time geodesics. The static isotropic solution is studied in vacuum and in regions filled with an incompressible perfect fluid. It is shown that the solutions can be consistently matched at the matter vacuum interface, and that the Newtonian behavior is recovered in the weak field regime.Comment: 6 pages, no figures, Revtex4. Some discussions on the physical nature of the interior solution and on the omega->infinity limit and some references added. Version to appear in Phys. Rev.

    A survey of spinning test particle orbits in Kerr spacetime

    Get PDF
    We investigate the dynamics of the Papapetrou equations in Kerr spacetime. These equations provide a model for the motion of a relativistic spinning test particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter space search for signs of chaotic dynamics by calculating the Lyapunov exponents for a large variety of initial conditions. We find that the Papapetrou equations admit many chaotic solutions, with the strongest chaos occurring in the case of eccentric orbits with pericenters close to the limit of stability against plunge into a maximally spinning Kerr black hole. Despite the presence of these chaotic solutions, we show that physically realistic solutions to the Papapetrou equations are not chaotic; in all cases, the chaotic solutions either do not correspond to realistic astrophysical systems, or involve a breakdown of the test-particle approximation leading to the Papapetrou equations (or both). As a result, the gravitational radiation from bodies spiraling into much more massive black holes (as detectable, for example, by LISA, the Laser Interferometer Space Antenna) should not exhibit any signs of chaos.Comment: Submitted to Phys. Rev. D. Follow-up to gr-qc/0210042. Figures are low-resolution in order to satisfy archive size constraints; a high-resolution version is available at http://www.michaelhartl.com/papers

    Extracting galactic binary signals from the first round of Mock LISA Data Challenges

    Full text link
    We report on the performance of an end-to-end Bayesian analysis pipeline for detecting and characterizing galactic binary signals in simulated LISA data. Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM) algorithm, which has been optimized to search for tens of thousands of overlapping signals across the LISA band. The BAM algorithm employs Bayesian model selection to determine the number of resolvable sources, and provides posterior distribution functions for all the model parameters. The BAM algorithm performed almost flawlessly on all the Round 1 Mock LISA Data Challenge data sets, including those with many highly overlapping sources. The only misses were later traced to a coding error that affected high frequency sources. In addition to the BAM algorithm we also successfully tested a Genetic Algorithm (GA), but only on data sets with isolated signals as the GA has yet to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin, Dec. '06

    Detection Strategies for Extreme Mass Ratio Inspirals

    Full text link
    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these Extreme Mass Ratio Inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for hundreds to thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between Genetic Algorithms and Markov Chain Monte Carlo techniques, along with several time saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.Comment: 10 pages, 4 figures, Updated for LISA 8 Symposium Proceeding

    Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods

    Full text link
    Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a Delayed Rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings
    • 

    corecore