2,121 research outputs found

    Small scale lateral superlattices in two-dimensional electron gases prepared by diblock copolymer masks

    Full text link
    A poly(styrene-block-methylmethacrylate) diblock copolymer in the hexagonal cylindrical phase has been used as a mask for preparing a periodic gate on top of a Ga[Al]As-heterostructure. A superlattice period of 43 nm could be imposed onto the two-dimensional electron gas. Transport measurements show a characteristic positive magnetoresistance around zero magnetic field which we interpret as a signature of electron motion guided by the superlattice potential.Comment: 3 pages, 3 figure

    What's a fabric? Concepts and approaches to modern textile design

    Get PDF

    Spin States in Graphene Quantum Dots

    Full text link
    We investigate ground and excited state transport through small (d = 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the ground state energy as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zemann splitting of spin states is measured. The results are compatible with a g-factor of 2 and we detect a spin-filling sequence for a series of states which is reasonable given the strength of exchange interaction effects expected for graphene

    Synthetic Beuys: on nano-materials and the aesthetics of imperceptibility

    Get PDF
    Aquest treball centra l'atenció sobre la paradoxal naturalesa dels nanoobjectes i analitza la relació entre una matèria imperceptible (massa petita per ser percebuda pels sentits) i les seves formes de manifestació ostensibles. El desenvolupament de les nanociències i la nanotecnologia no hauria estat possible si no s'hagués inventat una sèrie d'instruments de visualització (com el microscopi d'efecte túnel i el microscopi de força atòmica –STM i AFM segons les respectives sigles en anglès–). Des d'aquest punt de vista, podem parlar de nanopartícules com a «imatges-objectes» (Sacha Loeve), com a matèria mediadora. Si bé hi ha alguns estudis sobre la naturalesa de la investigació epistemològica en el camp de les nanociències i les nanotecnologies, encara és escàs l'interès pels canvis que es produeixen en el camp de l'estètica en relació amb la comprensió dels materials tractats mitjançant nanotecnologia. Tenint en compte els últims desenvolupaments en el terreny de la nanotecnologia aplicada als materials, aquest treball analitza com canvien l'estatus i la significació dels materials quan es tracten nanotecnològicament. Per a això proposem un escenari fictici relacionat amb algunes de les obres de Joseph Beuys en què substituïm els teixits «tradicionals» utilitzats per l'artista per altres de nous, produïts o tractats mitjançant nanotecnologia. Emprant el plantejament artístic de Joseph Beuys com a eina metodològica d'investigació crítica, estudiem com han de ser reevaluadas les categories perceptives, epistemològiques i semiòtiques quan tenen a veure amb plantejaments nanotecnològics. L'anàlisi ens ajudarà a formular algunes de les qüestions que artistes, dissenyadors i investigadors haurien de tenir en compte en tractar amb el que nosaltres anomenem «estètica de la imperceptibilitat» dels nanomaterials i les nanotecnologies

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure

    Effect of edge transmission and elastic scattering on the resistance of magnetic barriers

    Full text link
    Strong magnetic barriers are defined in two-dimensional electron gases by magnetizing dysprosium ferromagnetic platelets on top of a Ga[Al]As heterostructure. A small resistance across the barrier is observed even deep inside the closed regime. We have used semiclassical simulations to explain this behavior quantitatively in terms of a combined effect of elastic electron scattering inside the barrier region and E x B drift at the intersection of the magnetic barrier with the edge of the Hall bar.Comment: 7 pages 4 figure

    Electronic properties of quantum dots formed by magnetic double barriers in quantum wires

    Full text link
    The transport through a quantum wire exposed to two magnetic spikes in series is modeled. We demonstrate that quantum dots can be formed this way which couple to the leads via magnetic barriers. Conceptually, all quantum dot states are accessible by transport experiments. The simulations show Breit-Wigner resonances in the closed regime, while Fano resonances appear as soon as one open transmission channel is present. The system allows to tune the dot's confinement potential from sub-parabolic to superparabolic by experimentally accessible parameters.Comment: 5 pages, 5 figure

    Interactions and screening in gated bilayer graphene nanoribbons

    Full text link
    The effects of Coulomb interactions on the electronic properties of bilayer graphene nanoribbons (BGNs) covered by a gate electrode are studied theoretically. The electron density distribution and the potential profile are calculated self-consistently within the Hartree approximation. A comparison to their single-particle counterparts reveals the effects of interactions and screening. Due to the finite width of the nanoribbon in combination with electronic repulsion, the gate-induced electrons tend to accumulate along the BGN edges where the potential assumes a sharp triangular shape. This has a profound effect on the energy gap between electron and hole bands, which depends nonmonotonously on the gate voltage and collapses at intermediate electric fields. We interpret this behavior in terms of interaction-induced warping of the energy dispersion.Comment: 6 pages, 4 figure

    Non-Equilibrium Dynamics of Correlated Electron Transfer in Molecular Chains

    Full text link
    The relaxation dynamics of correlated electron transport (ET) along molecular chains is studied based on a substantially improved numerically exact path integral Monte Carlo (PIMC) approach. As archetypical model we consider a Hubbard chain containing two interacting electrons coupled to a bosonic bath. For this generalization of the ubiquitous spin-boson model, the intricate interdependence of correlations and dissipation leads to non-Boltzmann thermal equilibrium distributions for many-body states. By mapping the multi-particle dynamics onto an isomorphic single particle motion this phenomenon is shown to be sensitive to the particle statistics and due to its robustness allows for new control schemes in designed quantum aggregates.Comment: 5 pages, 4 figure
    corecore