418 research outputs found
Galactic Cosmic Ray Origins and OB Associations: Evidence from SuperTIGER Observations of Elements Fe through Zr
We report abundances of elements from Fe to Zr in the cosmic
radiation measured by the SuperTIGER (Trans-Iron Galactic Element Recorder)
instrument during 55 days of exposure on a long-duration balloon flight over
Antarctica. These observations resolve elemental abundances in this charge
range with single-element resolution and good statistics.
These results support a model of cosmic-ray origin in which the source
material consists of a mixture of 19\% material from massive stars
and 81\% normal interstellar medium (ISM) material with solar system
abundances. The results also show a preferential acceleration of refractory
elements (found in interstellar dust grains) by a factor of 4 over
volatile elements (found in interstellar gas) ordered by atomic mass (A). Both
the refractory and volatile elements show a mass-dependent enhancement with
similar slopes.Comment: 9 pages, 12 figures, 2 tables, accepted by Ap
Measurement of the cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight over Antarctica
The energy spectrum of cosmic-ray antiprotons from 0.17 to 3.5 GeV has been
measured using 7886 antiprotons detected by BESS-Polar II during a
long-duration flight over Antarctica near solar minimum in December 2007 and
January 2008. This shows good consistency with secondary antiproton
calculations. Cosmologically primary antiprotons have been investigated by
comparing measured and calculated antiproton spectra. BESS-Polar II data show
no evidence of primary antiprotons from evaporation of primordial black holes.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
Temperature dependence of ESR intensity for the nanoscale molecular magnet V15
The electron spin resonance (ESR) of nanoscale molecular magnet is studied. Since the Hamiltonian of has a large
Hilbert space and numerical calculations of the ESR signal evaluating the Kubo
formula with exact diagonalization method is difficult, we implement the
formula with the help of the random vector technique and the Chebyshev
polynominal expansion, which we name the double Chebyshev expansion method. We
calculate the temperature dependence of the ESR intensity of and
compare it with the data obtained in experiment. As another complementary
approach, we also implement the Kubo formula with the subspace iteration method
taking only important low-lying states into account. We study the ESR
absorption curve below by means of both methods. We find that side
peaks appear due to the Dzyaloshinsky-Moriya interaction and these peaks grows
as temperature decreases.Comment: 9 pages, 4 figures. To appear in J. Phys. Soc. Jpn. Supp
Fast Algorithm for Finding the Eigenvalue Distribution of Very Large Matrices
A theoretical analysis is given of the equation of motion method, due to
Alben et al., to compute the eigenvalue distribution (density of states) of
very large matrices. The salient feature of this method is that for matrices of
the kind encountered in quantum physics the memory and CPU requirements of this
method scale linearly with the dimension of the matrix. We derive a rigorous
estimate of the statistical error, supporting earlier observations that the
computational efficiency of this approach increases with matrix size. We use
this method and an imaginary-time version of it to compute the energy and the
specific heat of three different, exactly solvable, spin-1/2 models and compare
with the exact results to study the dependence of the statistical errors on
sample and matrix size.Comment: 24 pages, 24 figure
Origin of the Canonical Ensemble: Thermalization with Decoherence
We solve the time-dependent Schrodinger equation for the combination of a
spin system interacting with a spin bath environment. In particular, we focus
on the time development of the reduced density matrix of the spin system. Under
normal circumstances we show that the environment drives the reduced density
matrix to a fully decoherent state, and furthermore the diagonal elements of
the reduced density matrix approach those expected for the system in the
canonical ensemble. We show one exception to the normal case is if the spin
system cannot exchange energy with the spin bath. Our demonstration does not
rely on time-averaging of observables nor does it assume that the coupling
between system and bath is weak. Our findings show that the canonical ensemble
is a state that may result from pure quantum dynamics, suggesting that quantum
mechanics may be regarded as the foundation of quantum statistical mechanics.Comment: 12 pages, 4 figures, accepted for publication by J. Phys. Soc. Jp
Identifying Galactic Cosmic Ray Origins With Super-TIGER
Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 < or equal Z < or equal 42 with individual-element resolution and high statistical precision, and make exploratory measurements through Z = 60. It will also measure with high statistical accuracy the energy spectra of the more abundant elements in the interval 14 < or equal Z < or equal 30 at energies 0.8 < or equal E < or equal 10 GeV/nucleon. These spectra will give a sensitive test of the hypothesis that microquasars or other sources could superpose spectral features on the otherwise smooth energy spectra previously measured with less statistical accuracy. Super-TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins
Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter
In recent years, a number of experiments have been conducted with the goal of
studying cosmic rays at GeV to TeV energies. This is a particularly interesting
regime from the perspective of indirect dark matter detection. To draw reliable
conclusions regarding dark matter from cosmic ray measurements, however, it is
important to first understand the propagation of cosmic rays through the
magnetic and radiation fields of the Milky Way. In this paper, we constrain the
characteristics of the cosmic ray propagation model through comparison with
observational inputs, including recent data from the CREAM experiment, and use
these constraints to estimate the corresponding uncertainties in the spectrum
of cosmic ray electrons and positrons from dark matter particles annihilating
in the halo of the Milky Way.Comment: 21 pages, 9 figure
Galactic Cosmic-Ray Composition and Spectra for Ne through Cu from 0.8 to 10 GeV/nuc with the SuperTIGER Instrument
SuperTIGER (Trans-Iron Galactic Element Recorder) is a large-area balloon-borne instrument built to measure the galactic cosmic-ray abundances of elements from Z=10 (Ne) through Z=56 (Ba) at energies from 0.8 to ~10 GeV/nuc. SuperTIGER successfully flew around Antarctica for a record-breaking 55 days, from December 8, 2012 to February 1, 2013. In this paper, we present results of an analysis of the data taken during the flight for elements from Z=10 (Ne) to Z=28 (Ni). We report excellent charge separation throughout this range, with an Fe charge resolution of 0.16 charge units. Using a small sample of our data (~1/40th of our total), we will compare our galactic element secondary to primary ratios (e.g. (Sc+Ti+V)/Fe) with those from other instruments operating at different energy ranges
Quantum Nonlinear Switching Model
We present a method, the dynamical cumulant expansion, that allows to
calculate quantum corrections for time-dependent quantities of interacting spin
systems or single spins with anisotropy. This method is applied to the
quantum-spin model \hat{H} = -H_z(t)S_z + V(\bf{S}) with H_z(\pm\infty) =
\pm\infty and \Psi (-\infty)=|-S> we study the quantity P(t)=(1-_t/S)/2.
The case V(\bf{S})=-H_x S_x corresponds to the standard
Landau-Zener-Stueckelberg model of tunneling at avoided-level crossing for N=2S
independent particles mapped onto a single-spin-S problem, P(t) being the
staying probability. Here the solution does not depend on S and follows, e.g.,
from the classical Landau-Lifshitz equation. A term -DS_z^2 accounts for
particles' interaction and it makes the model nonlinear and essentially quantum
mechanical. The 1/S corrections obtained with our method are in a good accord
with a full quantum-mechanical solution if the classical motion is regular, as
for D>0.Comment: 4 Phys. Rev. pages 2 Fig
- …
