We solve the time-dependent Schrodinger equation for the combination of a
spin system interacting with a spin bath environment. In particular, we focus
on the time development of the reduced density matrix of the spin system. Under
normal circumstances we show that the environment drives the reduced density
matrix to a fully decoherent state, and furthermore the diagonal elements of
the reduced density matrix approach those expected for the system in the
canonical ensemble. We show one exception to the normal case is if the spin
system cannot exchange energy with the spin bath. Our demonstration does not
rely on time-averaging of observables nor does it assume that the coupling
between system and bath is weak. Our findings show that the canonical ensemble
is a state that may result from pure quantum dynamics, suggesting that quantum
mechanics may be regarded as the foundation of quantum statistical mechanics.Comment: 12 pages, 4 figures, accepted for publication by J. Phys. Soc. Jp