165 research outputs found
Identification and tunable optical coherent control of transition-metal spins in silicon carbide
Color centers in wide-bandgap semiconductors are attractive systems for
quantum technologies since they can combine long-coherent electronic spin and
bright optical properties. Several suitable centers have been identified, most
famously the nitrogen-vacancy defect in diamond. However, integration in
communication technology is hindered by the fact that their optical transitions
lie outside telecom wavelength bands. Several transition-metal impurities in
silicon carbide do emit at and near telecom wavelengths, but knowledge about
their spin and optical properties is incomplete. We present all-optical
identification and coherent control of molybdenum-impurity spins in silicon
carbide with transitions at near-infrared wavelengths. Our results identify
spin for both the electronic ground and excited state, with highly
anisotropic spin properties that we apply for implementing optical control of
ground-state spin coherence. Our results show optical lifetimes of 60 ns
and inhomogeneous spin dephasing times of 0.3 s, establishing
relevance for quantum spin-photon interfacing.Comment: Updated version with minor correction, full Supplementary Information
include
Changes in Lysozyme Flexibility upon Mutation Are Frequent, Large and Long-Ranged
We investigate changes in human c-type lysozyme flexibility upon mutation via a Distance Constraint Model, which gives a statistical mechanical treatment of network rigidity. Specifically, two dynamical metrics are tracked. Changes in flexibility index quantify differences within backbone flexibility, whereas changes in the cooperativity correlation quantify differences within pairwise mechanical couplings. Regardless of metric, the same general conclusions are drawn. That is, small structural perturbations introduced by single point mutations have a frequent and pronounced affect on lysozyme flexibility that can extend over long distances. Specifically, an appreciable change occurs in backbone flexibility for 48% of the residues, and a change in cooperativity occurs in 42% of residue pairs. The average distance from mutation to a site with a change in flexibility is 17–20 Å. Interestingly, the frequency and scale of the changes within single point mutant structures are generally larger than those observed in the hen egg white lysozyme (HEWL) ortholog, which shares 61% sequence identity with human lysozyme. For example, point mutations often lead to substantial flexibility increases within the β-subdomain, which is consistent with experimental results indicating that it is the nucleation site for amyloid formation. However, β-subdomain flexibility within the human and HEWL orthologs is more similar despite the lowered sequence identity. These results suggest compensating mutations in HEWL reestablish desired properties
Electromagnetically induced transparency in inhomogeneously broadened divacancy defect ensembles in SiC
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins. In its archetypical form, mainly explored with atomic media, it uses a (near-)homogeneous ensemble of three-level systems, in which two low-energy spin-1/2 levels are coupled to a common optically excited state. We investigate the implementation of EIT with c-axis divacancy color centers in silicon carbide. While this material has attractive properties for quantum device technologies with near-IR optics, implementing EIT is complicated by the inhomogeneous broadening of the optical transitionsthroughout the ensemble and the presence of multiple ground-state levels. These may lead to darkening of the ensemble upon resonant optical excitation. Here, we show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry. Comparison of our experimental results with a model based on the Lindblad equations indicates that we can create coherences between different sets of two levels all-optically in these systems, with potential impact for RF-free quantum sensing applications. Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for awide array of defects in semiconductors
- …