20,456 research outputs found
Wave packet approach to transport in mesoscopic systems
Wave packets provide a well established and versatile tool for studying
time-dependent effects in molecular physics. Here, we demonstrate the
application of wave packets to mesoscopic nanodevices at low temperatures. The
electronic transport in the devices is expressed in terms of scattering and
transmission coefficients, which are efficiently obtained by solving an initial
value problem (IVP) using the time-dependent Schroedinger equation. The
formulation as an IVP makes non-trivial device topologies accessible and by
tuning the wave packet parameters one can extract the scattering properties for
a large range of energies.Comment: 12 pages, 4 figure
The magnetic field at milliarcsecond resolution around IRAS20126+4104
IRAS20126+4104 is a well studied B0.5 protostar that is surrounded by a ~1000
au Keplerian disk and is where a large-scale outflow originates. Both 6.7-GHz
CH3OH masers and 22-GHz H2O masers have been detected toward this young stellar
object. The CH3OH masers trace the Keplerian disk, while the H2O masers are
associated with the surface of the conical jet. Recently, observations of dust
polarized emission (350 um) at an angular resolution of 9 arcseconds (~15000
au) have revealed an S-shaped morphology of the magnetic field around
IRAS20126+4104. The observations of polarized maser emissions at milliarcsecond
resolution (~20 au) can make a crucial contribution to understanding the
orientation of the magnetic field close to IRAS20126+4104. This will allow us
to determine whether the magnetic field morphology changes from arcsecond
resolution to milliarcsecond resolution. The European VLBI Network was used to
measure the linear polarization and the Zeeman splitting of the 6.7-GHz CH3OH
masers toward IRAS20126+4104. The NRAO Very Long Baseline Array was used to
measure the linear polarization and the Zeeman splitting of the 22-GHz H2O
masers toward the same region. We detected 26 CH3OH masers and 5 H2O masers at
high angular resolution. Linear polarization emission was observed toward three
CH3OH masers and toward one H2O maser. Significant Zeeman splitting was
measured in one CH3OH maser (\Delta V_{Z}=-9.2 +/- 1.4 m/s). No significant (5
sigma) magnetic field strength was measured using the H2O masers. We found that
in IRAS20126+4104 the rotational energy is less than the magnetic energy.Comment: 9 pages, 5 figures, 2 tables, accepted by Astronomy & Astrophysic
EVN observations of 6.7-GHz methanol maser polarization in massive star-forming regions II. First statistical results
Magnetic fields have only recently been included in theoretical simulations
of high-mass star formation. The simulations show that magnetic fields play an
important role in the formation and dynamics of molecular outflows. Masers, in
particular 6.7-GHz CH3OH masers, are the best probes of the magnetic field
morphologies around massive young stellar objects on the smallest scales of
10-100 AU. This paper focuses on 4 massive young stellar objects,
IRAS06058+2138-NIRS1, IRAS22272+6358A, S255-IR, and S231, which complement our
previous 2012 sample (the first EVN group). From all these sources, molecular
outflows have been detected in the past. Seven of the European VLBI Network
antennas were used to measure the linear polarization and Zeeman-splitting of
the 6.7-GHz CH3OH masers in the star-forming regions in this second EVN group.
We detected a total of 128 CH3OH masing cloudlets. Fractional linear
polarization (0.8%-11.3%) was detected towards 18% of the CH3OH masers in our
sample. The linear polarization vectors are well ordered in all the massive
young stellar objects. We measured significant Zeeman-splitting in
IRAS06058+2138-NIRS1 (DVz=3.8+/-0.6 m/s) and S255-IR (DVz=3.2+/-0.7 m/s). By
considering the 20 massive young stellar objects towards which the morphology
of magnetic fields was determined by observing 6.7-GHz CH3OH masers in both
hemispheres, we find no evident correlation between the linear distributions of
CH3OH masers and the outflows or the linear polarization vectors. On the other
hand, we present first statistical evidence that the magnetic field (on scales
10-100 AU) is primarily oriented along the large-scale outflow direction.
Moreover, we empirically find that the linear polarization fraction of
unsaturated CH3OH masers is P_l<4.5%.Comment: 13 pages, 8 figures, 7 tables, accepted by Astronomy & Astrophysic
High time-resolution observations of the Vela pulsar
We present high time resolution observations of single pulses from the Vela
pulsar (PSR B0833-45) made with a baseband recording system at observing
frequencies of 660 and 1413 MHz. We have discovered two startling features in
the 1413 MHz single pulse data. The first is the presence of giant micro-pulses
which are confined to the leading edge of the pulse profile. One of these
pulses has a peak flux density in excess of 2500 Jy, more than 40 times the
integrated pulse peak. The second new result is the presence of a large
amplitude gaussian component on the trailing edge of the pulse profile. This
component can exceed the main pulse in intensity but is switched on only
relatively rarely. Fluctutation spectra reveal a possible periodicity in this
feature of 140 pulse periods. Unlike the rest of the profile, this component
has low net polarization and emits predominantly in the orthogonal mode. This
feature appears to be unique to the Vela pulsar. We have also detected
microstructure in the Vela pulsar for the first time. These same features are
present in the 660 MHz data. We suggest that the full width of the Vela pulse
profile might be as large as 10 ms but that the conal edges emit only rarely.Comment: 6 pages, 5 figures, In Press with ApJ Letter
EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions III. The flux-limited sample
Theoretical simulations and observations at different angular resolutions
have shown that magnetic fields have a central role in massive star formation.
Like in low-mass star formation, the magnetic field in massive young stellar
objects can either be oriented along the outflow axis or randomly. Measuring
the magnetic field at milliarcsecond resolution (10-100 au) around a
substantial number of massive young stellar objects permits determining with a
high statistical significance whether the direction of the magnetic field is
correlated with the orientation of the outflow axis or not. In late 2012, we
started a large VLBI campaign with the European VLBI Network to measure the
linearly and circularly polarized emission of 6.7 GHz methanol masers around a
sample of massive star-forming regions. This paper focuses on the first seven
observed sources, G24.78+0.08, G25.65+1.05, G29.86-0.04, G35.03+0.35,
G37.43+1.51, G174.20-0.08, and G213.70-12.6. For all these sources, molecular
outflows have been detected in the past. We detected a total of 176 methanol
masing cloudlets toward the seven massive star-forming regions, 19% of which
show linearly polarized emission. The methanol masers around the massive young
stellar object MM1 in G174.20-0.08 show neither linearly nor circularly
polarized emission. The linear polarization vectors are well ordered in all the
other massive young stellar objects. We measured significant Zeeman splitting
toward both A1 and A2 in G24.78+0.08, and toward G29.86-0.04 and G213.70-12.6.
By considering all the 19 massive young stellar objects reported in the
literature for which both the orientation of the magnetic field at
milliarcsecond resolution and the orientation of outflow axes are known, we
find evidence that the magnetic field (on scales 10-100 au) is preferentially
oriented along the outflow axes.Comment: 17 pages, 10 figures, 9 tables, accepted by Astronomy & Astrophysics.
arXiv admin note: text overlap with arXiv:1306.633
A Quasi-Spherical Gravitational Wave Solution in Kaluza-Klein Theory
An exact solution of the source-free Kaluza-Klein field equations is
presented. It is a 5D generalization of the Robinson-Trautman quasi-spherical
gravitational wave with a cosmological constant. The properties of the 5D
solution are briefly described.Comment: 10 pages Latex, Revtex, submitted to GR
Anderson transitions in three-dimensional disordered systems with randomly varying magnetic flux
The Anderson transition in three dimensions in a randomly varying magnetic
flux is investigated in detail by means of the transfer matrix method with high
accuracy. Both, systems with and without an additional random scalar potential
are considered. We find a critical exponent of with random
scalar potential. Without it, is smaller but increases with the system
size and extrapolates within the error bars to a value close to the above. The
present results support the conventional classification of universality classes
due to symmetry.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
Electron conductivity and second generation Composite Fermions
The relation between the conductivity tensors of Composite Fermions and
electrons is extended to second generation Composite Fermions. It is shown that
it crucially depends on the coupling matrix for the Chern-Simons gauge field.
The results are applied to a model of interacting Composite Fermions that can
explain both the anomalous plateaus in spin polarization and the corresponding
maxima in the resistivity observed in recent transport experiments
On some geometric features of the Kramer interior solution for a rotating perfect fluid
Geometric features (including convexity properties) of an exact interior
gravitational field due to a self-gravitating axisymmetric body of perfect
fluid in stationary, rigid rotation are studied. In spite of the seemingly
non-Newtonian features of the bounding surface for some rotation rates, we
show, by means of a detailed analysis of the three-dimensional spatial
geodesics, that the standard Newtonian convexity properties do hold. A central
role is played by a family of geodesics that are introduced here, and provide a
generalization of the Newtonian straight lines parallel to the axis of
rotation.Comment: LaTeX, 15 pages with 4 Poscript figures. To be published in Classical
and Quantum Gravit
Stress condensation in crushed elastic manifolds
We discuss an M-dimensional phantom elastic manifold of linear size L crushed
into a small sphere of radius R << L in N-dimensional space. We investigate the
low elastic energy states of 2-sheets (M=2) and 3-sheets (M=3) using analytic
methods and lattice simulations. When N \geq 2M the curvature energy is
uniformly distributed in the sheet and the strain energy is negligible. But
when N=M+1 and M>1, both energies appear to be condensed into a network of
narrow M-1 dimensional ridges. The ridges appear straight over distances
comparable to the confining radius R.Comment: 4 pages, RevTeX + epsf, 4 figures, Submitted to Phys. Rev. Let
- …