69 research outputs found

    Influence of polymer-coated slow-release urea on total tract apparent digestibility, ruminal fermentation and performance of Nellore steers

    Get PDF
    Objective Two experiments were performed to evaluate the effects of coated slow-release urea on nutrient digestion, ruminal fermentation, nitrogen utilization, blood glucose and urea concentration (Exp 1), and average daily gain (ADG; Exp 2) of steers. Methods Exp 1: Eight ruminally fistulated steers [503±28.5 kg body weight (BW)] were distributed into a d 4×4 Latin square design and assigned to treatments: control (CON), feed grade urea (U2), polymer-coated slow-release urea A (SRA2), and polymer-coated slow-release urea B (SRB2). Dietary urea sources were set at 20 g/kg DM. Exp 2: 84 steers (350.5±26.5 kg initial BW) were distributed to treatments: CON, FGU at 10 or 20 g/kg diet DM (U1 and U2, respectively), coated SRA2 at 10 or 20 g/kg diet DM (SRA1 and SRA2, respectively), and coated SRB at 10 or 20 g/kg diet DM (SRB1 and SRB2, respectively). Results Exp 1: Urea treatments (U2+SRA2+SRB2) decreased (7.4%, p = 0.03) the DM intake and increased (11.4%, p<0.01) crude protein digestibility. Coated slow-release urea (SRA2+SRB2) showed similar nutrient digestibility compwared to feed grade urea (FGU). However, steers fed SRB2 had higher (p = 0.02) DM digestibility compared to those fed SRA2. Urea sources did not affect ruminal fermentation when compared to CON. Although, coated slow-release urea showed lower (p = 0.01) concentration of NH3-N (−10.4%) and acetate to propionate ratio than U2. Coated slow-release urea showed lower (p = 0.02) urinary N and blood urea concentration compared to FGU. Exp 2: Urea sources decreased (p = 0.01) the ADG in relation to CON. Animals fed urea sources at 10 g/kg DM showed higher (12.33%, p = 0.01) ADG compared to those fed urea at 20 g/kg DM. Conclusion Feeding urea decreased the nutrient intake without largely affected the nutrient digestibility. In addition, polymer-coated slow-release urea sources decreased ruminal ammonia concentration and increased ruminal propionate production. Urea at 20 g/kg DM, regardless of source, decreased ADG compared both to CON and diets with urea at 10 g/kg DM

    Association of genetic variants in the promoter region of genes encoding p22phox (CYBA) and glutamate cysteine ligase catalytic subunit (GCLC) and renal disease in patients with type 1 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the <it>CYBA </it>gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O<sub>2</sub><sup>•- </sup>(-675 T → A in <it>CYBA</it>, unregistered) and in glutathione metabolism (-129 C → T in <it>GCLC </it>[rs17883901] and -65 T → C in <it>GPX3 </it>[rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients.</p> <p>Methods</p> <p>401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m<sup>2 </sup>(n = 136) and were genotyped.</p> <p>Results</p> <p>No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying <it>CYBA </it>genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying <it>GCLC </it>genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (<it>p </it>= 0.0082). Logistic regression analysis identified the presence of at least one A allele of the <it>CYBA </it>SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, <it>p </it>= 0.0354) and the presence of at least one T allele of the <it>GCLC </it>rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, <it>p </it>= 0.0068).</p> <p>Conclusions</p> <p>The functional SNPs <it>CYBA </it>-675 T → A and <it>GCLC </it>rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.</p

    Amifostine reduces the seminiferous epithelium damage in doxorubicin-treated prepubertal rats without improving the fertility status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amifostine is an efficient cytoprotector against toxicity caused by some chemotherapeutic drugs. Doxorubicin, a potent anticancer anthracycline, is known to produce spermatogenic damage even in low doses. Although some studies have suggested that amifostine does not confer protection to doxorubicin-induced testicular damage, schedules and age of treatment have different approach depending on the protocol. Thus, we proposed to investigate the potential cytoprotective action of amifostine against the damage provoked by doxorubicin to prepubertal rat testes (30-day-old) by assessing some macro and microscopic morphometric parameters 15, 30 and 60 days after the treatment; for fertility evaluation, quantitative analyses of sperm parameters and reproductive competence in the adult phase were also carried out.</p> <p>Methods</p> <p>Thirty-day-old male rats were distributed into four groups: Doxorubicin (5 mg/kg), Amifostine (400 mg/kg), Amifostine/Doxorubicin (amifostine 15 minutes before doxorubicin) and Sham Control (0.9% saline solution). "Standard One Way Anova" parametric and "Anova on Ranks" non-parametric tests were applied according to the behavior of the obtained data; significant differences were considered when p < 0.05.</p> <p>Results</p> <p>The rats killed 30 and 60 days after doxorubicin treatment showed diminution of seminiferous epithelium height and reduction on the frequency of tubular sections containing at least one type of differentiated spermatogonia; reduction of sperm concentration and motility and an increase of sperm anomalous forms where observed in doxorubicin-treated animals. All these parameters were improved in the Amifostine/Doxorubicin group only when compared to Doxorubicin group. Such reduction, however, still remained below the values obtained from the Sham Control group. Nevertheless, the reproductive competence of doxorubicin-treated rats was not improved by amifostine pre-administration.</p> <p>Conclusions</p> <p>These results suggest that amifostine promotes a significant reduction of the doxorubicin long-term side effects on the seminiferous epithelium of prepubertal rats, which is reflected in the epidydimal fluid parameters in the adult phase. However, fertility status results suggest that such protection may not be effective against sperm DNA content damage. Further investigation of sperm DNA integrity must be carried out using amifostine and doxorubicin-treated experimental models.</p

    The global spectrum of plant form and function

    Full text link
    corecore