81 research outputs found
Coupling single molecule magnets to quantum circuits
In this work we study theoretically the coupling of single molecule magnets
(SMMs) to a variety of quantum circuits, including microwave resonators with
and without constrictions and flux qubits. The main results of this study is
that it is possible to achieve strong and ultrastrong coupling regimes between
SMM crystals and the superconducting circuit, with strong hints that such a
coupling could also be reached for individual molecules close to constrictions.
Building on the resulting coupling strengths and the typical coherence times of
these molecules (of the order of microseconds), we conclude that SMMs can be
used for coherent storage and manipulation of quantum information, either in
the context of quantum computing or in quantum simulations. Throughout the work
we also discuss in detail the family of molecules that are most suitable for
such operations, based not only on the coupling strength, but also on the
typical energy gaps and the simplicity with which they can be tuned and
oriented. Finally, we also discuss practical advantages of SMMs, such as the
possibility to fabricate the SMMs ensembles on the chip through the deposition
of small droplets.Comment: 23 pages, 12 figure
Weak and Strong coupling regimes in plasmonic-QED
We present a quantum theory for the interaction of a two level emitter with
surface plasmon polaritons confined in single-mode waveguide resonators. Based
on the Green's function approach, we develop the conditions for the weak and
strong coupling regimes by taking into account the sources of dissipation and
decoherence: radiative and non-radiative decays, internal loss processes in the
emitter, as well as propagation and leakage losses of the plasmons in the
resonator. The theory is supported by numerical calculations for several
quantum emitters, GaAs and CdSe quantum dots and NV centers together with
different types of resonators constructed of hybrid, cylindrical or wedge
waveguides. We further study the role of temperature and resonator length.
Assuming realistic leakage rates, we find the existence of an optimal length at
which strong coupling is possible. Our calculations show that the strong
coupling regime in plasmonic resonators is accessible within current technology
when working at very low temperatures (<4K). In the weak coupling regime our
theory accounts for recent experimental results. By further optimization we
find highly enhanced spontaneous emission with Purcell factors over 1000 at
room temperature for NV-centers. We finally discuss more applications for
quantum nonlinear optics and plasmon-plasmon interactions.Comment: published as Phys. Rev. B 87, 115419 (2013
Cavity-enhanced Raman microscopy of individual carbon nanotubes
Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics
Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities
Wereport on measurements and modeling of the mode structure of tunable Fabry–Pérot optical microcavities with imperfect mirrors.Wefind that non-spherical mirror shape and finite mirror size leave the fundamental mode mostly unaffected, but lead to loss, mode deformation, and shifted resonance frequencies at particular mirror separations. For small mirror diameters, the useful cavity length is limited to values significantly below the expected stability range.Weexplain the observations by resonant coupling between different transverse modes of the cavity and mode-dependent diffraction loss. A model based on resonant state expansion that takes into account the measured mirror profile can reproduce the measurements and identify the parameter regime where detrimental effects of mode mixing are avoided
Sources of UHECRs in view of the TUS and JEM-EUSO experiments
The origin of ultra-high-energy cosmic rays (UHECRs) is one of the most
intriguing problems of modern cosmic ray physics. We briefly review the main
astrophysical models of their origin and the forthcoming orbital experiments
TUS and JEM-EUSO, and discuss how the new data can help one solve the
long-standing puzzle.Comment: 4 pages; prepared for ECRS-2012 (http://ecrs2012.sinp.msu.ru/); v2: a
reference adde
Beyond the Jaynes-Cummings model: circuit QED in the ultrastrong coupling regime
In cavity quantum electrodynamics (QED), light-matter interaction is probed
at its most fundamental level, where individual atoms are coupled to single
photons stored in three-dimensional cavities. This unique possibility to
experimentally explore the foundations of quantum physics has greatly evolved
with the advent of circuit QED, where on-chip superconducting qubits and
oscillators play the roles of two-level atoms and cavities, respectively. In
the strong coupling limit, atom and cavity can exchange a photon frequently
before coherence is lost. This important regime has been reached both in cavity
and circuit QED, but the design flexibility and engineering potential of the
latter allowed for increasing the ratio between the atom-cavity coupling rate
and the cavity transition frequency above the percent level. While these
experiments are well described by the renowned Jaynes-Cummings model, novel
physics is expected in the ultrastrong coupling limit. Here, we report on the
first experimental realization of a superconducting circuit QED system in the
ultrastrong coupling limit and present direct evidence for the breakdown of the
Jaynes-Cummings model.Comment: 5 pages, 3 figure
Working Memory and Response Inhibition as One Integral Phenotype of Adult ADHD? A Behavioral and Imaging Correlational Investigation
Objective: It is an open question whether working memory (WM) and response inhibition (RI) constitute one integral phenotype in attention deficit hyperactivity disorder (ADHD).
Method: The authors investigated 45 adult ADHD patients and 41 controls comparable for age, gender, intelligence, and education during a letter n-back and a stop-signal task, and measured prefrontal oxygenation by means of functional near-infrared spectroscopy.
Results: The authors replicated behavioral and cortical activation deficits in patients compared with controls for both tasks and also for performance in both control conditions. In the patient group, 2-back performance was correlated with stop-signal reaction time. This correlation did not seem to be specific for WM and RI as 1-back performance was correlated with go reaction time. No significant correlations of prefrontal oxygenation between WM and RI were found. Conclusion: The authors’ findings do not support the hypothesis of WM and RI representing one integral phenotype of ADHD mediated by the prefrontal cortex
Theory and Applications of X-ray Standing Waves in Real Crystals
Theoretical aspects of x-ray standing wave method for investigation of the
real structure of crystals are considered in this review paper. Starting from
the general approach of the secondary radiation yield from deformed crystals
this theory is applied to different concreat cases. Various models of deformed
crystals like: bicrystal model, multilayer model, crystals with extended
deformation field are considered in detailes. Peculiarities of x-ray standing
wave behavior in different scattering geometries (Bragg, Laue) are analysed in
detailes. New possibilities to solve the phase problem with x-ray standing wave
method are discussed in the review. General theoretical approaches are
illustrated with a big number of experimental results.Comment: 101 pages, 43 figures, 3 table
- …