80 research outputs found

    Model for coiling and meandering instability of viscous threads

    Full text link
    A numerical model is presented to describe both the transient and steady-state dynamics of viscous threads falling onto a plane. The steady-state coiling frequency w is calculated as a function of fall height H. In the case of weak gravity, w ~ H^{-1} and w ~ H are obtained for lower and higher fall heights respectively. When the effect of gravity is significant, the relation w ~ H^2 is observed. These results agree with the scaling laws previously predicted. The critical Reynolds number for coil-uncoil transition is discussed. When the gravity is weak, the transition occurs with hysteresis effects. If the plane moves horizontally at a constant speed, a variety of meandering oscillation modes can be observed experimentally. The present model also can describe this phenomenon. The numerically obtained state diagram for the meandering modes qualitatively agrees with the experiment.Comment: 12 pages, 10 figure

    Microdevices for extensional rheometry of low viscosity elastic liquids : a review

    Get PDF
    Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations

    Midlife managerial experience is linked to late life hippocampal morphology and function

    Get PDF
    An active cognitive lifestyle has been suggested to have a protective role in the long-term maintenance of cognition. Amongst healthy older adults, more managerial or supervisory experiences in midlife are linked to a slower hippocampal atrophy rate in late life. Yet whether similar links exist in individuals with Mild Cognitive Impairment (MCI) is not known, nor whether these differences have any functional implications. 68 volunteers from the Sydney SMART Trial, diagnosed with non-amnestic MCI, were divided into high and low managerial experience (HME/LME) during their working life. All participants underwent neuropsychological testing, structural and resting-state functional MRI. Group comparisons were performed on hippocampal volume, morphology, hippocampal seed-based functional connectivity, memory and executive function and self-ratings of memory proficiency. HME was linked to better memory function (p = 0.024), mediated by larger hippocampal volume (p = 0.025). More specifically, deformation analysis found HME had relatively more volume in the CA1 sub-region of the hippocampus (p  <  0.05). Paradoxically, this group rated their memory proficiency worse (p = 0.004), a result correlated with diminished functional connectivity between the right hippocampus and right prefrontal cortex (p  <  0.001). Finally, hierarchical regression modelling substantiated this double dissociation

    Gene-Environment Interaction in the Etiology of Mathematical Ability Using SNP Sets

    Get PDF
    Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a ‘SNP set’ composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative

    The Genetic Association Between ADHD Symptoms and Reading Difficulties: The Role of Inattentiveness and IQ

    Get PDF
    Previous studies have documented the primarily genetic aetiology for the stronger phenotypic covariance between reading disability and ADHD inattention symptoms, compared to hyperactivity-impulsivity symptoms. In this study, we examined to what extent this covariation could be attributed to “generalist genes” shared with general cognitive ability or to “specialist” genes which may specifically underlie processes linking inattention symptoms and reading difficulties. We used multivariate structural equation modeling on IQ, parent and teacher ADHD ratings and parent ratings on reading difficulties from a general population sample of 1312 twins aged 7.9–10.9 years. The covariance between reading difficulties and ADHD inattention symptoms was largely driven by genetic (45%) and child-specific environment (21%) factors not shared with IQ and hyperactivity-impulsivity; only 11% of the covariance was due to genetic effects common with IQ. Aetiological influences shared among all phenotypes explained 47% of the variance in reading difficulties. The current study, using a general population sample, extends previous findings by showing, first, that the shared genetic variability between reading difficulties and ADHD inattention symptoms is largely independent from genes contributing to general cognitive ability and, second, that child-specific environment factors, independent from IQ, also contribute to the covariation between reading difficulties and inattention symptoms
    corecore