1,701 research outputs found

    Survey of educational opportunities in Grand, Clear Creek and Jackson counties, Colorado, A

    Get PDF
    August, 1930.Includes bibliographical references (page 85)

    Microwave response of an NS ring coupled to a superconducting resonator

    Get PDF
    A long phase coherent normal (N) wire between superconductors (S) is characterized by a dense phase dependent Andreev spectrum . We probe this spectrum in a high frequency phase biased configuration, by coupling an NS ring to a multimode superconducting resonator. We detect a dc flux and frequency dependent response whose dissipative and non dissipative components are related by a simple Debye relaxation law with a characteristic time of the order of the diffusion time through the N part of the ring. The flux dependence exhibits h/2eh/2e periodic oscillations with a large harmonics content at temperatures where the Josephson current is purely sinusoidal. This is explained considering that the populations of the Andreev levels are frozen on the time-scale of the experiments.Comment: 5 pages,4 figure

    Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3

    Get PDF
    INTRODUCTION: Involution of the mammary gland is a complex process of controlled apoptosis and tissue remodelling. The aim of the project was to identify genes that are specifically involved in this process. METHODS: We used Affymetrix oligonucleotide microarrays to perform a detailed transcript analysis on the mechanism of controlled involution after withdrawal of the pups at day seven of lactation. Some of the results were confirmed by semi-quantitative reverse transcriptase polymerase chain reaction, Western blotting or immunohistochemistry. RESULTS: We identified 145 genes that were specifically upregulated during the first 4 days of involution; of these, 49 encoded immunoglobulin genes. A further 12 genes, including those encoding the signal transducer and activator of transcription 3 (STAT3), the lipopolysaccharide receptor (CD14) and lipopolysaccharide-binding protein (LBP), were involved in the acute-phase response, demonstrating that the expression of acute-phase response genes can occur in the mammary gland itself and not only in the liver. Expression of LBP and CD14 was upregulated, at both the RNA and protein level, immediately after pup withdrawal; CD14 was strongly expressed in the luminal epithelial cells. Other genes identified suggested neutrophil activation early in involution, followed by macrophage activation late in the process. Immunohistochemistry and histological staining confirmed the infiltration of the involuting mammary tissue with neutrophils, plasma cells, macrophages and eosinophils. CONCLUSION: Oligonucleotide microarrays are a useful tool for identifying genes that are involved in the complex developmental process of mammary gland involution. The genes identified are consistent with an immune cascade, with an early acute-phase response that occurs in the mammary gland itself and resembles a wound healing process

    Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    Get PDF
    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft

    Superconducting diamagnetic fluctuations in ropes of carbon nanotubes

    Full text link
    We report low-temperature magnetisation measurements on a large number of purified ropes of single wall carbon nanotubes. In spite of a large superparamagnetic contribution due to the small ferromagnetic catalytical particles still present in the sample, at low temperature (T<0.5KT < 0.5K) and low magnetic field (H<80OeH < 80 Oe), a diamagnetic signal is detectable. This low temperature diamagnetism can be interpreted as the Meissner effect in ropes of carbon nanotubes which have previously been shown to exhibit superconductivity from transport measurements.Comment: 10 pages 3 figure

    Universal Loss Dynamics in a Unitary Bose Gas

    Full text link
    The low temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here we first present a theoretical model that describes the dynamic competition between two-body evaporation and three-body re-combination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal magic trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the 2D evaporation case. Experiments performed with unitary 133 Cs and 7 Li atoms fully support our predictions and enable quantitative measurements of the 3-body recombination rate in the low temperature domain. In particular, we measure for the first time the Efimov inelasticity parameter η\eta * = 0.098(7) for the 47.8-G d-wave Feshbach resonance in 133 Cs. Combined 133 Cs and 7 Li experimental data allow investigations of loss dynamics over two orders of magnitude in temperature and four orders of magnitude in three-body loss. We confirm the 1/T 2 temperature universality law up to the constant η\eta *

    Emergence of chaotic scattering in ultracold Er and Dy

    Full text link
    We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate

    Assessing emission reduction targets with dynamic models: deriving target load functions for use in integrated assessment

    No full text
    International audienceInternational agreements to reduce the emission of acidifying sulphur (S) and nitrogen (N) compounds have been negotiated on the basis of an understanding of the link between acidification related changes in soil and surface water chemistry and terrestrial and aquatic biota. The quantification of this link is incorporated within the concept of critical loads. Critical loads are calculated using steady state models and give no indication of the time within which acidified ecosystems might be expected to recover. Dynamic models provide an opportunity to assess the timescale of recovery and can go further to provide outputs which can be used in future emission reduction strategies. In this respect, the Target Load Function (TLF) is proposed as a means of assessing the deposition load necessary to restore a damaged ecosystem to some pre-defined acceptable state by a certain time in the future. A target load represents the deposition of S and N in a defined year (implementation year) for which the critical limit is achieved in a defined time (target year). A TLF is constructed using an appropriate dynamic model to determine the value of a chemical criterion at a given point in time given a temporal pattern of S and N deposition loads. A TLF requires information regarding: (i) the chemical criterion required to protect the chosen biological receptor (i.e. the critical limit); (ii) the year in which the critical limit is required to be achieved; and (iii) time pattern of future emission reductions. In addition, the TLF can be assessed for whole regions to incorporate the effect of these three essentially ecosystem management decisions. Keywords: emission reduction, critical load, target load, dynamic model, recovery tim
    corecore