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This paper contains a simulation study of a real-time adaptive least-squares drag mini-
mization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model
is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a
novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge
Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to
find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold
flight control mode at cruise conditions. The aerodynamic coefficient parameters used in
this optimization method are identified in real-time using Recursive Least Squares (RLS).
The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency
for drag minimization for transport aircraft.

I. Introduction

Air vehicles are typically designed to maintain sufficient structural rigidity for safe load-carrying capacity.
Modern engineered materials such as composites have begun to appear in airframe designs that exhibit less
structural rigidity while providing the same load-carrying capacity. An example of a light-weight airframe
design is the Boeing 787 Dreamliner aircraft, which has more flexible wing structures than older-generation
aircraft. This increased structural flexibility afforded by modern materials could be exploited to improve
aerodynamic efficiency of future air vehicle concepts.

As the flexibility of aircraft wings increases due to the light-weight composites construction, adverse
aerodynamics at off-design can result from aeroelastic deflections. Increased drag, hence more fuel burn,
is one such potential consequence. Without means for aeroelastic compensation, the benefit of weight
reduction from the use of light-weight material could be negated by sub-optimal aerodynamic performance
at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially
address these technical challenges for future flexible wing transports. PAAW technology leverages multi-
disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design,
while simultaneously addressing operational constraints that can prevent optimal aerodynamic performance
from being realized.

The Variable Camber Continuous Trailing Edge Flap (VCCTEF), illustrated in Fig. 1, is a possible
candidate PAAW concept that has been jointly developed by NASA and Boeing Research & Technology
under the NASA Fixed Wing project. The VCCTEF concept was originally developed under a NASA
Innovation Fund study entitled “Elastically Shaped Future Air Vehicle Concept” in 2010.1,2 This study
examined new concepts that can enable active control of wing aeroelasticity to achieve drag reduction. The
results showed that a highly flexible wing could be elastically shaped in-flight by active control of wing twist
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and vertical deflection to improve aerodynamic efficiency during cruise and enhance lift performance during
take-off and landing. The VCCTEF concept was developed to address this need1 by providing spanwise
load tailoring via spanwise flap sections which are joined together by an elastomer material, and chordwise
pressure shaping via a variable camber flap having three chordwise segments as shown in Fig. 1. Initial
studies indicate that at off-design conditions the VCCTEF system may offer a potential pay-off in drag
reduction that could provide significant fuel savings.3

Figure 1. GTM with Variable Camber Continuous Trailing Edge Flap

II. Problem Statement

This paper describes the formulation of an aeroelastic model of the GTM with the VCCTEF and the
subsequent optimization using a real-time adaptive drag minimization algorithm for an altitude-hold flight
control mode at cruise for symmetric flight conditions. In symmetric flight conditions the aircraft is in a
wing-level flight and its center of gravity moves only in a vertical plane.

The GTM aircraft model used in this study represents one of the most common types of transport air-
craft in the commercial aviation sector that provides short-to-medium range passenger carrying capabilities.
Design cruise for this study is assumed to be at M = 0.8, an altitude of 35, 000 ft, CL = 0.4595, and 50%
fuel load.

The wing planform of the GTM incorporates a VCCTEF layout. The layout of the VCCTEF on the
wings used in this study is shown in Fig. 2. The flap system is made up of 19 individual spanwise sections
which enable different flap settings at each spanwise position; 15 sections attached to the outer wing and
4 sections attached to the inner wing, as shown in Fig. 2. This results in the ability to control the wing
twist shape as a function of span. Changing the wing twist provides the possibility to minimize drag for a
specific lift at any aircraft gross weight or mission segment. Wing twist on traditional commercial transport
designs is dictated by the aeroelastic deflection of a fixed “jig twist” shape applied at manufacture. The
design of this jig twist is set for one cruise configuration, typically for a 50% fuel loading or mid-point on the
gross weight schedule. The VCCTEF offers different wing twist settings, hence different spanwise loadings,
for each gross weight condition and also different settings for climb, cruise, and descent, a major factor in
obtaining minimum drag at specified lift coefficients.

The multiple spanwise flap sections are connected with a flexible covering and form a continuous trailing
edge when the flap sections are deflected. The flexible covering between the flaps sections is an elastomer
material and is illustrated in black in Fig. 2. This continuous trailing edge flap is used to optimize the
spanwise lift distribution to improve aerodynamic efficiency. An aircraft wing equipped with the VCCTEF
can be shaped adaptively to attain better aerodynamic performance throughout a flight envelope. Further-
more, the continuous trailing edge would mitigate strong vortices which otherwise would have formed at the
conventional flap discontinuity in the trailing edge region. By mitigating strong vortex formation, viscous
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drag losses as well as acoustic noise from turbulence could be attenuated.

Figure 2. GTM Wing configured with VCCTEF

The spanwise flap sections are restricted in their movement due to structural properties between adjoint
sections. To model the candidate optimal shape of the individual flap sections, this study uses a parametriza-
tion of the flap deflections using a shape function in the form of a fifth-degree Chebyshev polynomial, given
by

δi,3 =

N∑
n=0

anTn (x) (1)

where T0 (x) = 1, T1 (x) = x, T2 (x) = 2x2 − 1, T3 (x) = 4x3 − 3x, T4 (x) = 8x4 − 8x2 − 1, T5 (x) =
16x5 − 8x4 − 16x3 − 8x2 − 2x− 1, and

x =
yi
L

(2)

with yi as the mid-point of the location of the i-th flap section numbered from root to tip and L as the length
of half a wing span. This parametrization results in six design variables (DVs) for the drag minimization
problem (a0, a1, a2, a3, a4, a5 ).

Each flap section of the VCCTEF is comprised of three chordwise segments of equal chord length, as
shown in Fig. 3. These three chordwise flap segments can be actuated individually in unison when a flap
deflection command is given. By varying the deflections of the individual chordwise flap segments, any
camber surface can be created to achieve a desired aerodynamic performance. In this study the segments
are coupled according to a circular-arc camber shape, as follows

δi,1 = 1
3δi,3

δi,2 = 2
3δi,3

(3)

This relation allows the drag minimization algorithm to only consider the deflection angle of the third chord-
wise flap segment, δi,3, since the other two segments will follow accordingly. In a previous study, it was found
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that the circular-arc camber provides one of the best aerodynamic performance among the different camber
configurations investigated using OVERFLOW CFD.4 The deflection angle of each individual chordwise
segment is measured relative to each hinge and the undeflected trailing edge as shown in Fig. 3.

Figure 3. Three-Segment Variable Camber Continuous Trailing Edge Flap

In this study, the drag minimization will not only consider the six DV’s of the VCCTEF, but will also
take the relating variables into account, namely angle of attack α, wing tip bending wt, and wing tip twist
θt. The wing tip bending and twist represent the aeroelastic states of the bending (W ) and torsion (Θ)
deflections. In this study, the motion of the VCCTEF is assumed to be slow due to the slow response of the
Shape Memory Alloy (SMA) actuators. Therefore, the aircraft state variables are also assumed to change
slowly. As a result, the coupling of the flight dynamic and aeroservoelastic model is performed under the
assumption of quasi-steady aerodynamics. The bending and torsion deflections are expressed as

W (ȳ, t) = Φ (ȳ)wt (t) (4)

Θ (ȳ, t) = Ψ (ȳ) θt (t) (5)

where Φ (ȳ) and Ψ (ȳ) are the mode shape functions of the quasi-steady wing bending and torsion, respec-
tively, and wt (t) and θt (t) are the wing tip bending deflection and twist (positive nose down), respectively.
The elastic axis, ȳ, is swept back from the y-axis normal to the flow direction by a sweep angle Λ and is
illustrated in Fig. 2.

An altitude-hold flight control mode is designed to trim the aircraft at the design cruise altitude of
35000ft. The elevator deflection, δe, that is required for the altitude-hold flight control mode, will also be
taken into consideration in the drag minimization algorithm.

The real-time adaptive drag minimization requires the aerodynamic coefficients to be estimated in flight.
A Recursive Least Squares (RLS) identification method is built to estimate the aerodynamic coefficients and
derivatives. In this study, an important assumption in the RLS identification approach is that the Mach
number does not vary significantly. This assumption is reasonable, since in this study the altitude hold mode
ensures that the height does not change noticeably. Furthermore, the airspeed is kept nearly constant by
setting it equal to drag.

A simulation study is conducted to assess the real-time adaptive drag minimization strategy.

III. Model Development

This section describes the static aeroelastic model for the GTM. The model is constructed from a
Galerkin’s solution coupled with a vortex-lattice aerodynamic solution through an automatic geometry gen-
eration tool.

Furthermore, the modeling of the aerodynamic coefficients and the truth model is discussed. Lastly, the
coupled aeroelastic-flight dynamics equations used for the simulation are presented.

A. Aerodynamic Model

This study uses the Athena Vortex Lattice method (AVL)5 as aircraft aerodynamic modeling tool. This
method is based on thin wing aerodynamic theory using horseshoe vortex computations. The AVL method
does not compute the viscous and wave drag components. The focus of this study is on drag minimization
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and not so much on the actual drag values. The effects of viscous and wave drag do not necessarily alter the
adaptive drag minimization approach. Viscous skin friction drag, however, is added to the drag model.

The aerodynamic model is illustrated in Fig. 4. The AVL tool does not include the effect of aeroelasticity
and the VCCTEF. For this reason, a deformer is used to change the aircraft geometry based on the aeroe-
lasticity and VCCTEF deflections. The deformer provides the ability to modify the wash-out twist angle of
the wing sections to model the effect of aeroelasticity. The aeroelastic wash-out twist is calculated as

ξaeroelastic = Ψ(ȳ)θt cos Λ− dΦ (ȳ)

dȳ
wt sin Λ (6)

Figure 4. Aerodynamic Model

In this study, the aerodynamic coefficients (CD, CL, Cm) are modeled with respect to the following vari-
ables: angle of attack α, wing tip bending wt, wing tip twist θt, the Chebyshev coefficients a1...5, and the
elevator deflection δe.

The drag coefficient CD is approximated to have a quadratic relation between the optimization variables
according to

CD = CD0
+ CDαα+ CDwtwt + CDθt θt + CDδe δe + CDaa + CDαwtαwt + CDαθtαθt

+ CDαδeαδe + CDαaαa + CDwtθtwtθt + CDwtδewtδe + CDwtawta + CDθtδe θtδe

+ CDθtaθta + CDδeaδea + CDα2α
2 + CD

w2
t

w2
t + CD

θ2t

θ2t + CDδ2e
δ2e + aTCDa2a (7)

where a =
[
a0 a1 a2 a3 a4 a5

]T
is the vector of the Chebyshev coefficients.

The lift (CL) and moment (Cm) coefficients are modeled linearly by

CL = CL0
+ CLαα+ CLwtwt + CLθt θt + CLδe δe + CLaa (8)

Cm = Cm0
+ Cmαα+ Cmwtwt + Cmθt θt + Cmδeδe + Cmaa (9)

The AVL tool does not incorporate the effect of the elevator on the aerodynamic coefficients. For this
reason, the elevator contributions are calculated separately, according to

CDδe =
dCDh
dδe

η
Sh
S

(10)

CLδe =
dCLh
dδe

η
Sh
S

(11)

Cmδe = −dCLh
dδe

ηVh (12)

where dCLh
dδe

and dCDh
dδe

are the elevator drag sensitivity and elevator lift effectiveness, respectively, η is the
horizontal tail efficiency, Sh is the horizontal tail surface, S is the wing surface, and Vh is the horizontal tail
volume ratio.
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Since CD is modeled as a quadratic function, the quadratic and coupled elevator terms (CDδ2e , CDδea ,
CDαδe , CDwtδe , CDθtδe ) are also included in the aerodynamic model. These coupled terms are calculated
using the following derivation for drag

CD = CD0
+KC2

L = CD0
+K

(
CL0

+ CLαα+ CLwtwt + CLθt θt + CLδe δe + CLaa
)2 (13)

where K = 1
πARε is the induced drag parameter which is a function of the wing aspect ratio AR and the

Oswald’s span efficiency ε.
Upon expanding

CD = CD0
+K

(
C2
L0

+ 2CL0
CLαα+ 2CL0

CLwtwt + 2CL0
CLθt θt + 2CL0

CLδe δe + 2CL0
CLaa

+2CLαCLwtαwt + 2CLαCLθtαθt + 2CLαCLδeαδe + 2CLαCLaαa + 2CLwtCLθtwtθt

+2CLwtCLδewtδe + 2CLwtCLawta + 2CLθtCLδe θtδe + 2CLθtCLaθta + 2CLδeCLaδea

+C2
Lαα

2 + C2
Lwt

w2
t + C2

Lθt
θ2t + C2

Lδe
δ2e + aTC2

La
a
)

(14)

Equating Eq. 7 to Eq. 14 results in

CDδ2e
= KC2

Lδe
(15)

CDαδe = 2KCLαCLδe (16)
CDwtδe = 2KCLwtCLδe (17)
CDθtδe = 2KCLθtCLδe (18)
CDaδe

= 2KCLaCLδe (19)
The local lift and moment distribution are modeled as cubic spline functions with respect to Mach number

M , angle of attack α, wing tip bending wt and twist θt. The contribution of the VCCTEF to these spline
models is assumed to be linear as

cl = clspline (M,α,wt, θt) + claa (20)
cmac = cmspline (M,α,wt, θt) + cmaa (21)

The altitude-hold control mode requires the formulation of the linear longitudinal flight dynamic state-
space model. For this linear model, the longitudinal aerodynamic forces and moments are calculated as

X = CXq∞S (22)
Z = CZq∞S (23)
M = Cmq∞Sc̄ (24)

where X is the axial force, Z is the normal force and M is the pitching moment. The axial and normal force
coefficients are related to the lift and drag coefficients as

CX = CL sinα− CD cosα (25)
CZ = −CL cosα− CD sinα (26)

where, for a small angle of attack α, this relation can be expressed as

CX = −CD (27)
CZ = −CL (28)

From the above equations, the effect of the VCCTEF on the longitudinal aerodynamic forces and moments
and on the force and moment coefficients can be derived as

Xa = CXaq∞S (29)
CXa = −CDa (30)
Za = CZaq∞S (31)
CZa = −CLa (32)

Ma = Cmaq∞Sc̄ (33)
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B. Truth Model

A truth model is built for the GTM that replaces the AVL model of the GTM, and provides the drag (CD), lift
(CL), and moment (Cm) coefficients along with the local distributions of lift (cl) and moment coefficients at
the quarter chord (cmac). The advantage of the truth model over the AVL model is the significant reduction
in computation time during simulations.

For the modeling of the truth model, the aerodynamic coefficients are estimated as a function of their
aerodynamic coefficient parameters as in Eqs. 7 - 9. Let ĈD be the estimate of CD. This estimate of the
drag coefficient can be written as

ĈD = θTDφD (α,wt, θt, δe,a) (34)

with

θD =
[
ĈD0

ĈDα ĈDwt ĈDθt ĈDδe ĈDa ĈDαwt ĈDαθt ĈDαδe ĈDαa ĈDwtθt

ĈDwtδe ĈDwta ĈDθtδe ĈDθta ĈDδea ĈDα2 ĈD
w2
t

ĈD
θ2t

ĈDδ2e
ele
(
ĈDa2

) ]T
(35)

and

φD =
[

1 α wt θt δe a αwt αθt αδe αa wtθt

wtδe wta θtδe θta δea α2 w2
t θ2t δ2e ele

(
a>a

) ]T
(36)

where ele (A) is the element-wise column vector of A.
The same procedure can be done for the lift coefficient, with ĈL the estimate of CL,

ĈL = θTLφL (α,wt, θt, δe,a) (37)

with θL =
[
ĈL0 ĈLα ĈLwt ĈLθt ĈLδe ĈLa

]T
and φL =

[
1 α wt θt δe a

]T
and for the

moment coefficient, with Ĉm the estimate of Cm,

Ĉm = θTmφm (α,wt, θt, δe,a) (38)

with θm =
[
Ĉm0

Ĉmα Ĉmwt Ĉmθt Ĉmδe Ĉma

]T
and φm =

[
1 α wt θt δe a

]T
The truth model is created by using a batch least squares identification algorithm to define the aero-

dynamic parameters (θD, θL and θm), including the influence of the Mach number, but excluding the
contribution of the elevator. The truth model for CD, CL, and Cm is generated by creating a large dataset
for different inputs in Mach number, 0.6 ≤ M ≤ 0.8, angle of attack, 0◦ ≤ α ≤ 5◦, wing tip bending,
−2ft ≤ wt ≤ 6ft, wing tip twist, −5◦ ≤ θt ≤ 0◦, and VCCTEF deflections, −5◦ ≤ δ ≤ 10◦. First, the dataset
is separated for the different Mach numbers, and the parameters are estimated according to

θD = (AD)
−1
BD (39)

θL = (AL)
−1
BL (40)

θm = (Am)
−1
Bm (41)

with

AD =
∑

φD (α,wt, θt,a)φTD (α,wt, θt,a) (42)

AL =
∑

φL (α,wt, θt,a)φTL (α,wt, θt,a) (43)

Am =
∑

φm (α,wt, θt,a)φTm (α,wt, θt,a) (44)

and
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BD =
∑

φD (α,wt, θt,a)CD (45)

BL =
∑

φL (α,wt, θt,a)CL (46)

Bm =
∑

φm (α,wt, θt,a)Cm (47)

The next step is to couple the Mach number into the truth model. This is done by estimating the param-
eters that relate the Mach number to the lift, moment, and drag parameters. In general, the compressibility
effect on aerodynamics can be described by the Prandtl-Glauert transformation rule for subsonic flow. For
simplicity, the relation with the Mach number is assumed to be cubic, as can be seen in Eq. 48. The Mach
parameters are also calculated using a batch least squares identification algorithm, with

φM =


1

M

M2

M3

 (48)

AM =
∑

φMφ
T
M (49)

BDM =
∑

φMθD (50)

BLM =
∑

φMθL (51)

BmM =
∑

φMθm (52)

aD = (AM )
−1
BDM (53)

aL = (AM )
−1
BLM (54)

am = (AM )
−1
BmM (55)

Finally, the truth model algorithm is built upon these estimated aerodynamic and Mach parameters with
the following two steps:

1.
θD = φTMaD θL = φTMaL θm = φTMam (56)

2.
CDtruthmodel = φTDθD CLtruthmodel = φTLθL Cmtruthmodel = φTmθm (57)

For the cubic spline modeling of the local lift and moment distributions, the truth model is built using the
built-in Matlab function interpn. Because this spline modeling function requires significant computation
time, the data set is narrowed down to a subset (0.75 ≤ M ≤ 0.85, −1◦ ≤ α ≤ 3◦, 2ft ≤ wt ≤ 4ft,
−2◦ ≤ θt ≤ 0◦).

In order to verify the accuracy of the truth model, the root-mean-square error (RMSE) and mean percent
error (MPE) for the aerodynamic parameters and local distributions are calculated with Eq. 58 and Eq. 59.
The results are given in Table 1. From this, we can conclude that the truth model gives an accurate estimation
of the aerodynamic parameters.

RMSE [−] =

√∑n
t=1 (ŷt − yt)2

n
(58)

MPE [%] = 100%×

∣∣∣∣∣
∑n
t=1(ŷt−yt)

n∑n
t=1 yt
n

∣∣∣∣∣ (59)

where ŷt is the truth model estimate for the parameter, yt the value for that estimate from AVL, and n the
total number of comparison data.
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Parameter RMSE [-] MPE [%]

CD 2.4 · 10−5 0.16
CL 1.0 · 10−3 0.18
Cm 5.5 · 10−4 0.82
cl 4.4 · 10−3 0.05
cmac 1.7 · 10−3 0.13

Table 1. Root-mean-square Error Truth Model

C. Nonlinear Longitudinal Flight Dynamic Model

The nonlinear longitudinal flight dynamic model is built for the purpose of the simulation. The relations are
given by Eqs. 60 to 64.

ḣ = V sin γ (60)

V̇ =
T − CDq∞S −W sin γ

m
(61)

γ̇ =
CLq∞S −W cos γ

mV
(62)

q̇ =
Cmq∞Sc̄+ Tze

Iyy
(63)

θ̇ = q (64)

The drag, lift, and moment coefficients used in the nonlinear flight dynamic equations consist of the truth
model coefficients (including the contributions of M , α, wt, θt and a) estimated from AVL and the elevator
and pitch rate coefficients according to the following:

CD = CDtruthmodel + CDviscous + CDδe δe + CDαδeαδe + CDwtδewtδe + CDθtδe θtδe

+ CDaδe
δea + CDδ2e

δ2e + CDq
qc̄

2V
(65)

CL = CLtruthmodel + CLδe δe + CLq
qc̄

2V
(66)

Cm = Cmtruthmodel + Cmδe δe + Cmq
qc̄

2V
(67)

where the stability derivatives with respect to the pitch rate are

CDq = 2KC̄LCLq (68)

CLq = 2CLα

(xw,ac
c̄
− xcg

c̄

)
+ 2CLh,αηVh (69)

Cmq = −2CLα

(xcg
c̄
− xw,ac

c̄

)2
− 2CLh,αηVh

lh
c̄

(70)

with C̄L the trim lift coefficient, xw,ac the location of the aerodynamic center of the wing, xcg the location of
the center of gravity, c̄ the mean aerodynamic chord, CLh,α the horizontal tail lift derivative with respect to
α, η the horizontal tail efficiency, Vh the horizontal tail volume ratio and lh the moment arm of the horizontal
tail. The contributions to the drag coefficient of the quadratic and cross-product terms with respect to the
pitch rate q (CDq2 , CDαq , CDwtq , CDθtq , CDaq ,CDδeq ) are assumed to be neglible.

A constant viscous drag component equal to 0.01 is assumed in this simulation.
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D. Coupled Aeroelastic Longitudinal Flight Dynamic Model

The general aeroelastic equations for a coupled bending-torsion motion of a swept wing are expressed as

ρA
∂2W

∂t2
+ ρAecg

∂2Θ

∂t2
+

∂2

∂ȳ2

(
EIyy

∂2W

∂t2

)
= l̄ cos Λ +

∂m̄

∂ȳ
cos Λ sin Λ (71)

ρIxx
∂2Θ

∂t2
+ ρAecg

∂2W

∂t2
− ∂

∂ȳ

(
GJ

∂Θ

∂ȳ

)
= m̄ cos2 Λ (72)

where ecg is the offset of the center of mass from the elastic axis, positive when the center of mass lies
forward of the elastic axis and Λ is the sweep angle of the elastic axis (see Fig. 2). The unsteady lift force
and pitching moment are given by

l̄ = C(k)cLαq∞c

(
Θ cos Λ− ∂W

∂ȳ
sin Λ +

ec cos Λ

V∞

∂Θ

∂t
− 1

V∞

∂W

∂t

)
+ ρ∞

πc2

4

(
V∞ cos Λ

∂Θ

∂t
+ em cos Λ

∂2Θ

∂t2
− ∂2W

∂t2

)
+ l̄r + cLaq∞ca (73)

m̄ = C(k)cLαq∞ce

(
Θ cos Λ− ∂W

∂ȳ
sin Λ +

ec cos Λ

V∞

∂Θ

∂t
− 1

V∞

∂W

∂t

)
−ρ∞

πc2

4
em

(
em cos Λ

∂2Θ

∂t2
− ∂2W

∂t2

)
−ρ∞

πc2

4
ecV∞

∂Θ

∂t
cos Λ−ρ∞

πc4

128

∂2Θ

∂t2
cos Λ+m̄r+

(
cma +

e

c
cLa

)
q∞c

2a

(74)

where e is the location of the elastic axis, em is the distance between the elastic axis and the mid-chord
point, ec is the distance between the elastic axis and three-quarter chord point, and c is the sectional chord
length (see Fig. 2), l̄r is the rigid lift contribution and m̄r is the rigid moment contribution. Since this study
assumes quasi-steady aerodynamics, the Theodorsen’s circulation function C(k) is equal to unity.6

For drag minimization, the aircraft is assumed to be in quasi-steady conditions. Therefore, the wing
aeroelastic effect is assumed to be governed by mostly the first bending mode and torsion mode. As a result,
the aeroelastic bending and torsion equations can be described as functions of only the wing tip bending and
wing tip twist as in Eqs. 4 and 5. Using this formulation, the simplified aeroelastic equations (Eqs. 71 and
72) can be modeled numerically according to the Galerkin method as

[M + Ma]

[
ẅt

θ̈t

]
+ [C + Ca]

[
ẇt

θ̇t

]
+ [K + Ka]

[
wt

θt

]
= Frxr + Faa (75)

where K is the generalized structural stiffness matrix, Ka is the aerodynamic stiffness matrix, C is the gen-
eralized structural damping matrix, Ca is the aerodynamic damping matrix, M is the generalized structural
mass matrix, Ma is the aerodynamic mass matrix and where Fr is

Fr =
q∞ cos Λ

V∞

L̂

0

[
0 0 V∞cC(k)cLαΦT (ȳ) c2

(
3
4 + xLE

c

)
C (k) cLαΦT (ȳ) 0

0 0 V∞ceC(k)cLα cosΛΨ (ȳ) c2e
(
3
4 + xLE

c

)
cos ΛC (k) cLαΨ (ȳ) 0

]
(76)

and Fa is

Fa = q∞

[ ´ L
0

ΦT (ȳ) cLac cos Λdȳ´ L
0
ΨT (ȳ)

(
cma + e

c cLa

)
c2 cos2 Λdȳ

]
(77)

with cL the sectional lift distribution, x̄LE the location of the leading edge of the wing section relative to
the aircraft center of gravity and e the location of the elastic axis.

The state vector for the rigid-body aircraft xr is
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xr =


h

V

α

q

θ

 (78)

IV. Flight Control

Optimal flight control by means of a linear-quadratic regulator (LQR) is implemented to provide an
altitude-hold mode during the drag minimization algorithm simulation. The altitude-hold mode is used to
trim the aircraft at the design cruise altitude. This altitude-hold mode minimizes aircraft motion for ride
qualities.

Furthermore, the airspeed is set equal to drag to ensure the aircraft stays at a constant Mach number.
This is implemented not only for passenger comfort, but also because an important assumption in the drag
minimization algorithm is a constant Mach number.

A. Linear Longitudinal Flight Dynamic State-Space Model

For the purpose of control design, the nonlinear longitudinal flight dynamic model is linearized about a
trimmed cruise condition, resulting in a linear longitudinal flight dynamic state-space model of the form

∆u̇

∆α̇

q̇

∆θ̇

 =


Xu Xα Xq −g
Zu Zα Zq + V̄ 0

Mu Mα Mq 0

0 0 1 0




∆u

∆α

q

∆θ

+


Xδe Xδ

Zδe Zδ

Mδe Mδ

0 0


[

∆δe

δ

]
(79)

where δ are the flap deflections of the VCCTEF.
For the purpose of the altitude hold mode, this state-space system is augmented with an integral error

state of the flight path angle, given by

xγ =

ˆ t

0

∆γdτ (80)

where ∆γ = γ − γc = ∆θ −∆α− γc is the error between the flight path angle and the command signal.
This results in the augmented state-space model of the form


∆u̇

∆α̇

q̇

∆θ̇

ẋγ

 =


Xu Xα Xq −g 0

Zu Zα Zq + V̄ 0 0

Mu Mα Mq 0 0

0 0 1 0 0

0 −1 0 1 0




∆u

∆α

q

∆θ

xγ

+


Xδe Xδ

Zδe Zδ

Mδe Mδ

0 0

0 0


[

∆δe

δ

]
+


0

0

0

0

−γc

 (81)

B. VCCTEF Virtual Control Variables

As mentioned before, the VCCTEF deflections, δ, are parametrized as a function of the constants, a0···5, by
the 5th-degree Chebyshev polynomial shape function (see Eq. 1). For the altitude hold mode with real-time
drag minimization, these constants form a command vector instead of an input vector. The state-space
model is rewritten as

11 of 33

American Institute of Aeronautics and Astronautics




∆u̇

∆α̇

q̇

∆θ̇

ẋγ

 =


Xu Xα Xq −g 0

Zu Zα Zq + V̄ 0 0

Mu Mα Mq 0 0

0 0 1 0 0

0 −1 0 1 0




∆u

∆α

q

∆θ

xγ



+


Xδe

Zδe
Mδe

0

0

∆δe +


Xa0 Xa1 Xa2 Xa3 X4 Xa5

Za0 Za1 Za2 Za3 Za4 Za5
Ma0 Ma1 Ma2 Ma3 Ma4 Ma5

0 0 0 0 0 0

0 0 0 0 0 0





a0

a1

a2

a3

a4

a5


+


0

0

0

0

−γc

 (82)

The commands ai(t), i = 1, . . . , N , are functions of time prescribed by an input random sample for the
RLS identification.

C. Coupled Flight Dynamic and Aeroservoelastic Model

A coupled longitudinal flight dynamic and aeroservoelastic (ASE) model of the GTM is developed. It consists
of the linear flight dynamic model, a linear aeroelastic model of the flexible wing, and a linear actuator model
of the VCCTEF for the aeroelastic states.

Implementation of the aeroelastic variables defined in Eq. 75 into the linear state-space system results in
the following model:



∆u̇

∆α̇

q̇

∆θ̇

ẋγ

∆ẇt

∆θ̇t

∆ẅt

∆θ̈t


=



Xu Xα Xq −g 0 Xwt Xθt Xẇt Xθ̇t

Zu Zα Zq + V̄ 0 0 Zwt Zθt Zẇt Zθ̇t
Mu Mα Mq 0 0 Mwt Mθt Mẇt Mθ̇t

0 0 1 0 0 0 0 0 0

0 −1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

Fr11 Fr12 Fr13 Fr14 Fr15 K11 K12 C11 C12

Fr21 Fr22 Fr23 Fr24 Fr25 K21 K22 C21 C22





∆u

∆α

q

∆θ

xγ

∆wt

∆θt

∆ẇt

∆θ̇t



+



Xδe

Zδe
Mδe

0

0

0

0

0

0


∆δe +



Xa0 Xa1 Xa2 Xa3 Xa4 Xa5

Za0 Za1 Za2 Za3 Za4 Za5
Ma0 Ma1 Ma2 Ma3 Ma4 Ma5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Fa10 Fa11 Fa12 Fa13 Fa14 Fa15
Fa20 Fa21 Fa22 Fa23 Fa24 Fa25





a0

a1

a2

a3

a4

a5


+



0

0

0

0

−γc
0

0

0

0


(83)

with
Frij =

{
(M + Ma)

−1
Fr

}
ij
, i = 1, 2 j = 1, 2, 3, 4, 5 (84)

Kij =
{
− (M + Ma)

−1
(K + Ka)

}
ij
, i = 1, 2, j = 1, 2 (85)

Cij =
{
− (M + Ma)

−1
(C + Ca)

}
ij
, i = 1, 2, j = 1, 2 (86)
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Fa
ij

=
{

(M + Ma)
−1

Fa

}
ij
, i = 1, 2, j = 0, 1, 2, 3, 4, 5 (87)

D. Optimal Control

The state-space model from Eq. 83 can written in the form

ẋ = Ax+Bu+ z (88)

which results in



∆u̇

∆α̇

q̇

∆θ̇

ẋγ

∆ẇt

∆θ̇t

∆ẅt

∆θ̈t


=



Xu Xα Xq −g 0 Xwt Xθt Xẇt Xθ̇t

Zu Zα Zq + V̄ 0 0 Zwt Zθt Zẇt Zθ̇t
Mu Mα Mq 0 0 Mwt Mθt Mẇt Mθ̇t

0 0 1 0 0 0 0 0 0

0 −1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

Fr11 Fr12 Fr13 Fr14 Fr15 K11 K12 C11 C12

Fr21 Fr22 Fr23 Fr24 Fr25 K21 K22 C21 C22





∆u

∆α

q

∆θ

xγ

∆wt

∆θt

∆ẇt

∆θ̇t



+



Xδe

Zδe
Mδe

0

0

0

0

0

0


∆δe +



Xa0a0 +Xa1a1 +Xa2a2 +Xa3a3 +Xa4a4 +Xa5a5

Za0a0 + Za1a1 + Za2a2 + Za3a3 + Za4a4 + Za5a5

Ma0a0 +Ma1a1 +Ma2a2 +Ma3a3 +Ma4a4 +Ma5a5

0

−γc
0

0

Fa10a0 + Fa11a1 + Fa12a2 + Fa13a3 + Fa14a4 + Fa15a5

Fa20a0 + Fa21a1 + Fa22a2 + Fa23a3 + Fa24a4 + Fa25a5


(89)

The optimal control is designed with the following quadratic cost function

J =
1

2

ˆ tf

0

[
xTQx+ uTRu

]
dt (90)

where Q and R are positive definite. The first term in the cost function is designed to bound the rigid-body
states and the aeroelastic modes. The second term is to minimize the control effort. These two terms form
the standard linear-quadratic regulator (LQR) cost function.

The Hamiltonian function of the optimal control problem is defined as

H =
1

2

[
xTQx+ uTRu

]
+ λT (Ax+Bu+ z) (91)

where λ is the adjoint vector.
The adjoint equation is obtained as

λ̇ = −∂H
T

∂x
= −Qx−ATλ (92)

The optimal control is obtained as

∂HT

∂u
= 0 = Ru+BTλ⇒ u = −R−1BTλ (93)

To solve for these equations, the adjoint equation and the state equation must be solved for simultaneously
along with the optimal control. Let λ = Px + Sz be a solution of the adjoint vector. Then, the adjoint
equation is obtained as
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Ṗ x+ Pẋ+ Ṡx+ Sż = −Qx−ATλ = −Qx−AT (Px+ Sz) (94)

The command flight path angle γc is a constant equal to zero and therefore γ̇c = 0. Let tf→∞, then the
optimal solution approaches a steady state solution. Therefore, Ṗ (tf ) = 0 and Ṡ (tf ) = 0. Then, separating
terms yields the following expressions

PA+ATP − PBR−1BTP +Q = 0 (95)

S =
(
PBR−1BT −AT

)−1
P (96)

The optimal control is then given by

u = Kxx+Kzz (97)

where

Kx = −R−1BTP (98)

Kz = −R−1BTS (99)

and P is the solution to the Algebraic Ricatti Equation of Eq. 95.
Furthermore, the velocity is kept nearly constant during the simulation by setting the thrust equal to

drag with

T = CDq∞S (100)

V. Adaptive Drag Minimization

A real-time adaptive drag minimization algorithm is designed for the GTM with flexible wings and VC-
CTEF. This drag minimization algorithm consists of two parts: first the aerodynamic coefficient parameters
are estimated in real-time using the Recursive Least Squares (RLS) estimation method, and secondly the
optimal VCCTEF deflections and elevator deflection (δe) are calculated from a constrained optimization
problem using the Newton-Raphson method.

A. Online Parameter Identification

The drag minimization algorithm uses estimates of the aerodynamic coefficients and aerodynamic coefficients
parameters to calculate the optimal configuration. For this reason, the aerodynamic coefficients are modeled
as functions of their aerodynamic parameters, as in Eqs. 7 - 9. These aerodynamic parameters (θCD , θCL , θCm)
are approximated online using the RLS.

Let C̃D = ĈD − CD be the estimation error of CD , C̃L = ĈL − CL the estimation error of CL and
C̃m = Ĉm − Cm the estimation error of Cm. Then we have

C̃D = θTDφD (α,wt, θt, δe,a)− CD (101)

C̃L = θTLφL (α,wt, θt, δe,a)− CL (102)

and

C̃m = θTmφm (α,wt, θt, δe,a)− Cm (103)

To find the drag, lift, and moment coefficient parameters, we seek to minimize the estimation errors C̃D,
C̃L and C̃m with the following quadratic cost functions according to the RLS

J (θD) =
1

2

ˆ t

0

C̃2
Ddτ =

1

2

ˆ t

0

(
θTDφD (α,wt, θt, δe,a)− CD

)2
dτ (104)

J (θL) =
1

2

ˆ t

0

C̃2
Ldτ =

1

2

ˆ t

0

(
θTLφL (α,wt, θt, δe,a)− CL

)2
dτ (105)
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J (θm) =
1

2

ˆ t

0

C̃2
mdτ =

1

2

ˆ t

0

(
θTmφm (α,wt, θt, δe,a)− Cm

)2
dτ (106)

The RLS method is an online parameter estimation method where new incoming data (φi ) is used to
update an existing model.7 The RLS identification approach starts with an initial parameter estimate (θ0)
and covariance matrix (ε0) and updates the model according to the following:

1. Update weighting matrix:

Ki =
εi−1φi

λ+ φTi εi−1φi
(107)

2. Prediction-error correction formula:

θi = θi−1 +Ki

(
yi − φTi θi−1

)
(108)

3. Corresponding covariance matrix update:

εi =
1

λ

(
I − εi−1

(
φiφ

T
i

λ+ φTi εi−1φi

))
εi−1 (109)

where ε is the covariance matrix, y is the incoming real aerodynamic coefficient, and λ is the forgetting
factor, which is set to unity for this study. After a certain number of data inputs, the parameter estimates
(θi) should converge toward to the “true” parameter values if the training signal is persistently exciting.

B. Optimization Method

The drag minimization algorithm calculates the optimal VCCTEF configuration for minimum drag during
cruise flight. As seen in Eq. 7, the drag coefficient does not only depend on the VCCTEF deflections,
parameterized by the Chebyshev polynomial coefficients a, but also on the angle of attack α, the wing tip
bending wt, the wing tip twist θt, and the elevator deflection δe. For this reason, all of these variables
are considered in the drag minimization algorithm. Furthermore, several constraints are imposed on the
optimization problem to ensure meeting specific flight characteristics.

The real-time parameter identification allows the use of the identified aerodynamic coefficient parameters
in the drag minimization algorithm. The elevator deflection is also included in the optimization and the
effect of the elevator on the aerodynamic coefficients is as shown in Eqs. 10 - 12 and Eqs. 15 - 18.

The objective of the drag minimization algorithm is to minimize the drag coefficient modeled in Eq. 7.
Several flight dynamic constraints are imposed on the optimization problem that reduce the dimension of
the optimization space.

The first constraint involves selecting a desired value for the lift coefficient, CLopt . Using the model of
CL in Eq. 8, the constraint is imposed as in Eq. 110.

CLopt − ĈL0
− ĈLαα− ĈLwtwt − ĈLθt θt − ĈLδe δe − ĈLaa = 0 (110)

In this study, the desired lift coefficient is equal to the design cruise lift coefficient, CLopt = 0.4595.
The second constraint imposes a trim condition of zero pitching moment, according to

Ĉmc̄+ ĈDze = 0 (111)

with c̄ the mean aerodynamic chord and ze the distance between the engine thrust line and the center of
gravity. In the second constraint, it is assumed that thrust is equal to drag, as in Eq. 100.

The third and fourth constraints are to ensure that the optimal wing tip bending and wing tip twist are
related to the optimal angle of attack and optimal VCCTEF deflections. A linear relation between the three
variables is established from the aeroelastic equations (see Eqs. 73 and 74), as

wt = wt0 + wtαα+ wtaa (112)

θt = θt0 + θtαα+ θtaa (113)

where
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wtα =
[

1 0
]

(K + Ka)
−1

Fα (114)

θtα =
[

0 1
]

(K + Ka)
−1

Fα (115)

wta =
[

1 0
]

(K + Ka)
−1
q∞

Fa

q∞
(116)

θta =
[

0 1
]

(K + Ka)
−1
q∞

Fa

q∞
(117)

with Fα the generalized aerodynamic force and pitching moment due to angle of attack (see Eq. 118), and
Fa the generalized aerodynamic force and pitching moment due to the VCCTEF (see Eq. 77).

Fα =

[ ´ L
0

ΦT (x)
(
cLαq∞c cos Λdx+ d

dxcLαq∞ce cos Λ sin Λ
)

´ L
0

ΨT (x)cLαq∞ce cos2 Λdx

]
(118)

This results in the following relations for the third and fourth constraints,

∆wt − wtα∆α− wtaa = 0 (119)

∆θt − θtα∆α− θtaa = 0 (120)

Adding these constraints to the objective of minimizing the drag coefficient results in the following
augmented drag minimization cost function,

J (α,wt, θt, δe,a) = ĈD + λ1

(
CLopt − ĈL0

− ĈLαα− ĈLwtwt − ĈLθt θt − ĈLδe δe − ĈLaa
)

+ λ2

(
Ĉmc̄+ ĈDze

)
+ λ3 (∆wt − wtα∆α− wtaa) + λ4 (∆θt − θtα∆α− θtaa) (121)

where λ1...4 are Lagrange multipliers or adjoint variables.
The augmented drag minimization cost function can be solved with the Newton-Raphson method. The

Newton-Raphson method finds a solution to a cost function by recursively finding better approximations
to the roots of a function (∇J (Θn) = 0) . The method starts with an initial guess (x0) for a root of the
function. If the function satisfies the assumptions made in the derivation of the formula and the initial guess
is close, then a better approximation is calculated with Eq. 122. This process is repeated until the design
variables converge to a sufficiently accurate solution.

xn+1 = xn −
[
∇2J (xn)

]−1∇J (Θn) (122)

where ∇J is the Jacobian and ∇2J (xn) is the Hessian of the cost function with respect to the design
variables.

The augmented cost function can be solved with the Newton-Raphson method by rewriting Eq. 121 into
the following equations:

∂J

∂ai
=
(
ĈDai + 2ĈD

a2
i

ai + ĈDaiaa + ĈDaiαα+ ĈDaiwtwt + ĈDaiθt θt + ĈDaiδe δe

)
(1 + zeλ2)

− λ ˆ
1CLai + λ2c̄Ĉmai − λ3wtai − λ4θtai = 0 (123)

∂J

∂α
=
(
ĈDα + 2ĈDα2α+ ĈDaαa + ĈDαwtwt + ĈDαθt θt + ĈDαδe δe

)
(1 + zeλ2)

− λ ˆ
1CLα + λ2c̄Ĉmα − λ3wtα − λ4θtα = 0 (124)

∂J

∂wt
=
(
ĈDwt + 2ĈD

w2
t

wt + ĈDawt
a + ĈDαwtα+ ĈDwtθt θt + ĈDwtδe δe

)
(1 + zeλ2)

− λ ˆ
1CLwt + λ2c̄Ĉmwt + λ3 = 0 (125)
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∂J

∂θt
=
(
ĈDθt + 2ĈD

θ2t

θt + ĈDaθt
a + ĈDαθtα+ ĈDwtθtwt + ĈDθtδe δe

)
(1 + zeλ2)

− λ ˆ
1CLθt + λ2c̄Ĉmθt + λ4 = 0 (126)

∂J

∂δe
=
(
ĈDδe + 2ĈDδ2e

wt + ĈDaδe
a + ĈDαδeα+ ĈDwtδewt + ĈDθtδe θt

)
(1 + zeλ2)

− λ ˆ
1CLδe + λ2c̄Ĉmδe = 0 (127)

∂J

∂λ1
= CLopt − ĈL0 − ĈLaa− ĈLαα− ĈLwtwt − ĈLθt θt − ĈLδe δe = 0 (128)

∂J

∂λ2
= Ĉmc̄+ ĈDze = 0 (129)

∂J

∂λ3
= ∆wt − wtα∆α− wtaa = 0 (130)

∂J

∂λ4
= ∆θt − θtα∆α− θtaa = 0 (131)

with i referring to the specific Chebyshev coefficient (i = 0, . . . , 5). These equations are solved for the
variables α, wt, θt, δe and a.

C. Iterative Refinement Optimization

The drag minimization algorithm starts with the excitation of the flight dynamic states by giving bounded
randomized VCCTEF deflection inputs to the aircraft model. This excitation allows the RLS parameter
estimation to converge to an initial estimate of the aerodynamic parameters. After a certain amount of time,
the excitation will be damped out and the VCCTEF will be deflected at the optimal deflection configuration.

In order to verify that the aircraft is in its actual minimum drag configuration, an iterative refinement
optimization is performed. The iterative refinement optimization consists of locally perturbing the VCCTEF
around the estimated optimal flap deflections, allowing the RLS method to update the estimates of the
aerodynamic coefficient parameters. If these parameters are updated to different values, a new optimum
could be found. From this we can conclude that the previously found optimum is not the actual minimum
drag configuration.

During the iterative refinement optimization, the third segment of the VCCTEF is perturbed by

δi = δopt + ∆δi (132)

with −0.5◦ ≤ ∆δi ≤ 0.5◦.
When a new optimal solution is found, the iterative refinement optimization can be repeated after a

certain period of time. For a new iterative refinement optimization to take place, a minimum change criteria
has to be obtained by the previous iterative refinement optimization. This criteria is necessary to avoid
unneeded flap perturbations when the parameter identification has already converged well enough. For this
study, a minimum change criteria of 0.00005 in the calculated optimal value for CD is used.

VI. Simulations

This section contains the results of a 500-sec simulation with a step size of ∆t = 0.01s. This simulation
is done for the GTM with the incorporated VCCTEF control surfaces.

A. Integration Scheme

For the simulation, three elementary integration schemes are considered, namely the implicit Euler method
(Eq. 133), the explicit Euler method (Eq. 134) and the trapezoidal Euler method (Eq. 135). The implicit
Euler method is a first order single-step method and has good stability properties. The explicit Euler
method has a conditional numerical stability that requires a small step size, ∆t, which can increase the
computation time. The Implicit and Explicit Euler methods are both first-order accurate. The trapezoidal
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Euler method is second-order accurate and thus provides a more accurate approximation than the implicit
Euler and explicit Euler methods. The trapezoidal Euler method is used in this study because of its good
stability and accuracy properties.

ẋ = f (x, t)→ xi+1 = xi + ∆t f (xi+1, ti+1) (133)

ẋ = f (x, t) = xi + ∆t f (xi, ti) (134)

ẋ = f (x, t)→ xi+1 = xi +
∆t

2
(f (xi+1, ti+1) + f (xi, ti)) (135)

B. Simulation Loop

The simulation loop is illustrated in Fig. 5. The simulation begins with the clean wing configuration. The
simulation starts with a randomized excitation of the VCCTEF, allowing the RLS identification algorithm
to estimate the aerodynamic coefficient parameters. The randomized VCCTEF inputs are constrained to
be within −3.6◦ ≤ δ ≤ 7.5◦ and to change at a maximum rate of 6◦ per seconds. These constraints are
necessary to avoid unbounded aircraft motion. The randomized inputs are used to create a time-varying
command for the flight control which commands the VCCTEF deflections while changing the elevator to
hold the aircraft altitude.

After this parameter identification period when the estimated parameters are deemed convergent, the
online optimization is performed. Then, the VCCTEF and elevator are deflected to the calculated optimal
values. Iterative refinement optimization takes place at t = 300s and can take place every 40 seconds after
that if needed. The elevator controller determines the elevator deflection by using optimal control for the
altitude-hold mode. The VCCTEF is deflected back to the clean wing configuration after the first iterative
refinement optimization. At t = 400s the VCCTEF is deflected to the calculated optimal configuration.
Deflecting the VCCTEF to the clean wing configuration is done to illustrate the difference between the
clean wing and optimal configuration in the simulation results. In real flight, the VCCTEF will be deflected
directly to the optimal configuration after each iterative refinement optimization.

Figure 5. Adaptive Real-time Drag Minimization Control Loop

C. Simulation Results

This section contains the results of the simulation of the real-time adaptive drag minimization for the GTM.

1. Online Parameter Identification

The RLS identification algorithm starts with a rough estimate of the aerodynamic parameters. In this
simulation, the initial drag coefficient parameters are randomized to be approximately 20% different from
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the true drag parameters, while the initial lift and moment coefficient parameters are randomized to be
approximately 10% different from the true lift and moment parameters. The simulation starts the first 200
seconds with the randomized excitation of the VCCTEF. After 200s, the VCCTEF deflections are set to the
calculated optimal values. The RLS identification algorithm continues throughout the simulation.

In Figs. 6 - 8 the convergence of the covariance resetting and the estimation errors C̃D, C̃L and C̃m to
zero are illustrated. For visual clarity reasons, the legend in Fig. 6 does not contain all the drag coefficient
parameters.

Most covariance resetting values converge to zero in the first 200 seconds, however not all values con-
vergence to zero yet. One can see that during the iterative refinement optimization period (at t = 300s)
these values tend to decrease again. This means that for these variables, the identified parameters could still
vary significantly for new input data. Longer and more disruptive excitation will allow these covariances to
eventually converge to zero. The change in VCCTEF deflections at the iterative refinement optimization
(t = 300s) and at the switch from clean wing to optimal wing configuration (t = 400s) stimulates the further
convergence of the covariance resetting and causes a temporary spike in the estimation errors.

The estimation errors however show that the aerodynamic coefficient estimates are very close to the
actual values. As a criteria, it is decided that the estimation error C̃D should be below 0.0001. Figure 6
shows that this criteria is achieved.

The updating of the aerodynamic parameters for ĈD, ĈL and Ĉm is illustrated in Figs. 9 - 11. For visual
clarity reasons, Fig. 9 does not contain all the drag coefficient parameters and only the first 250 seconds
of the simulation are illustrated. The final estimated values, actual values and estimation errors for some
parameters of ĈD and all parameters for ĈL and Ĉm are given in Tables 2 - 4.

Comparing Tables 2 - 4, it is noteworthy that the RLS identification algorithm is less able to estimate
the drag parameters than the lift and moment coefficient parameters. This could be because the number
of drag parameters is higher than for the lift and moment parameters, which could increase the difficulty
in estimating the influence of each separate variable. Furthermore, the coupled parameters could be harder
to identify due to the accumulation of uncertainties in the influence of each separate variable. Moreover,
the magnitude of drag parameters are generally small, thus creating a larger uncertainty in the parameter
estimation.

It is observed that, for all ĈD, ĈL and Ĉm, the parameters with respect to wing bending, wt, are difficult
to estimate accurately. This is probably due to the small value the wing tip bending directly has on the
aerodynamic coefficients. The accuracy of these parameters could result in less than optimal solutions. In
future research, improved methods will be developed to address this issue.

Final Estimated Value Truth Model Value Estimation Error [%]

CD0
0.0014 0.0016 -8.6

CDa0 0.0354 0.0405 -12.6
CDa5 0.0205 0.0195 5.1
CDα 0.0908 0.0917 -1.0
CDwt 0.0001 -0.0000 -866.6
CDθt 0.04670 0.0404 15.6
CDa0a0 0.2996 0.3211 -6.7
CDa0a5 0.1927 0.1886 2.2
CDa0α 1.2186 1.3997 -12.9
CDa0θt 0.6426 0.7239 -11.2

Table 2. Drag Coefficient Parameter Estimation Value and Estimation Error

2. Drag Minimization

The final results of the drag minimization are given in Table 5. The results are compared to the clean wing
configuration. The clean wing configuration corresponds to the trim state with zero VCCTEF deflections.
For this simulation, CLopt = 0.4595 is used. It can be seen that the drag-optimal configuration with the
VCCTEF indeed results in a lower drag for the same lift coefficient compared to the clean wing configuration.
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Figure 6. Covariance Resetting and Estimation Error Convergence for CD
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Figure 7. Covariance Resetting and Estimation Error Convergence for CL
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Figure 8. Covariance Resetting and Estimation Error Convergence for Cm
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Figure 9. Real-time Drag Coefficient Parameter Estimation

Figure 10. Real-time Lift Parameter Estimation
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Final Estimated Value Truth Model Value Estimation Error [%]

CL0 0.1797 0.1788 0.5
CLa0 2.6931 2.6910 0.1
CLa1 1.2435 1.2385 0.4
CLa2 -1.2322 -1.2486 -1.3
CLa3 -1.7640 -1.7727 -0.5
CLa4 -0.2372 -0.2295 3.4
CLa5 0.9087 0.9232 -1.6
CLα 6.6519 6.6672 -0.2
CLwt -0.0013 -0.0011 17.1
CLθt 3.0984 2.9375 5.5

Table 3. Lift Coefficient Parameter Estimation Value and Estimation Error

Figure 11. Real-time Moment Parameter Estimation

Final Estimated Value Truth Model Value Estimation Error [%]

Cm0
0.0123 0.0126 -2.4

Cma0 -0.6848 -0.6829 0.3
Cma1 -0.6154 -0.6135 0.3
Cma2 -0.2840 -0.2807 1.2
Cma3 0.3392 0.3402 -0.3
Cma4 0.7847 0.7824 0.3
Cma5 0.5411 0.5380 0.6
Cmα -1.5154 -1.5236 -0.5
Cmwt 0.0002 0.0001 11.1
Cmθt -0.6003 -0.5471 9.7

Table 4. Moment Coefficient Parameter Estimation Value and Estimation Error
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The drag coefficient in Table 5 includes the induced drag and a constant viscous drag (CDv = 0.01), but
excludes the wave drag component. In Table 5, one drag count is equal to 0.0001.

Variables Clean Wing Drag-Optimal Configuration with VCCTEF

α [deg] 2.5067 2.3156
δ [deg] 0 -1.5575 ≤ δi,3 ≤ 3.5443
δe [deg] -1.0541 -1.8566
wt [ft] 3.0654 3.3722
θt [deg] 0.1238 -0.1015
CL [-] 0.4595 0.4595
Cm [-] -0.0042 -0.0042

CD [drag count] 186.03 183.14

Table 5. Drag Optimization Results for VCCTEF Wing compared with Clean Wing Configuration

3. Iterative Refinement Optimization

The first iterative refinement optimization allows the RLS identification algorithm to update the aerodynamic
parameters to a more accurate estimation. The updated optimal configuration results are given in Table 6.
The optimal configuration changes slightly. Since the change in optimal drag is less than 0.00005, additional
iterative refinement optimization is not necessary. The results show that the aerodynamic parameters have
already converged significantly during the parameter identification period.

Variables Original Optimal Configuration Iterative Refinement Optimal Configuration

α [deg] 2.3156 2.3473
δ [deg] -1.5575 ≤ δi,3 ≤ 3.5443 -1.6652 ≤ δi,3 ≤ 3.3489
δe [deg] -1.8566 -1.8440
wt [ft] 3.3722 3.3637
θt [deg] -0.1015 -0.0831
CL [-] 0.4595 0.4595
Cm [-] -0.0042 -0.0042

CD [drag count] 183.14 183.17

Table 6. Optimal Solution of Drag Minimization after Iterative Refinement Optimization

The results of the VCCTEF optimization after iterative refinement optimization are presented in Figs. 12
- 16. Figure 12 shows the optimized flap deflections from root to tip for all three flap segments. The trailing
edge chordwise segments, δ3, have the largest deflections and the other two chordwise flaps segments follow
in a circular-arc camber.

Figure 13 shows that the VCCTEF is able to adjust the wing shape to allow the aircraft to fly at a
lower angle of attack for a specific lift coefficient. The lift-to-drag ratio distribution in Fig. 14 illustrates that
the aircraft has a higher lift-to-drag ratio at the optimal angle of attack compared to the clean wing trim
angle of attack. Figure 15 shows that the local lift distribution of the optimized VCCTEF configuration
is driven towards the elliptical lift distribution. The drag polar in Fig. 16 shows that the VCCTEF is able
to slightly decrease the drag for lift coefficients near the design lift coefficient in comparison with the clean
wing configuration.

4. Control Surfaces

The time histories of the control surfaces deflections, δ and δe, during the excitation simulation are illustrated
in Figs. 17 and 18. The excitation of the VCCTEF for the RLS identification algorithm takes place the first
200 seconds and the iterative refinement optimization takes place at t = 300s. Between 302s ≤ t ≤ 400s the
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Figure 12. New Optimal VCCTEF Configurations after Iterative Refinement Optimization

Figure 13. Lift Curve Comparison of Clean Wing Configuration and Optimized VCCTEF Configuration for
Cruise Flight Condition
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Figure 14. Lift to Drag Ratio Distribution of Clean Wing Configuration and Optimized VCCTEF Configuration
for Cruise Flight Condition

Figure 15. Lift Distribution of Clean Wing Configuration and Optimized VCCTEF Configuration for Cruise
Flight Condition
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Figure 16. Drag Polar Comparison of Clean Wing Configuration and Optimized VCCTEF Configuration for
Cruise Flight Condition

VCCTEF is deflected to clean wing configuration and between 400s ≤ t ≤ 500s the VCCTEF is deflected to
the optimal wing configuration. The elevator responds accordingly.

In Fig. 18 the calculated optimal elevator deflection is illustrated by the dotted orange line for the last
100 seconds of the simulation. The actual elevator deflection corresponds closely with this calculated optimal
elevator deflection. The difference between the actual elevator deflection and the calculated optimal elevator
deflection is 0.006◦.

5. Flight Dynamic States

The nonlinear rigid body flight dynamic and aeroelastic states of the GTM aircraft are shown in Figs. 19 and
20. From these figures, we can see that the perturbation of the VCCTEF excites α, wt and θt significantly.
This is important, since these states need to be excited thoroughly to allow for the RLS identification.

The linear altitude-hold flight controller has difficulties to hold the altitude at the excitation period,
but succeeds in bringing the aircraft back to the correct altitude during clean wing and optimal VCCTEF
configuration. The flight path angle varies during the excitation period, resulting in changes to the airspeed
during the excitation period. After the excitation period, the states converge back to their clean wing trim
or optimal VCCTEF trim states.

The dotted orange lines in Figs. 19 and 20 show the calculated optimal values for the α, wt, θt during
the last 100 seconds of the simulation. The figures show that these states correspond closely with their
calculated optimal values.

6. Aerodynamic Coefficients

Figure 21 shows the aerodynamic coefficients during the simulation. The excitation of the VCCTEF is clearly
visible during the first 200 seconds. The aerodynamic coefficients vary significantly during this excitation
period. This is important since it allows for better identification in the RLS identification algorithm.

From Fig. 21 one can see that the drag coefficient indeed converges to the calculated optimal value
(400s ≤ t ≤ 500s), and is lower than the value at the clean wing configuration (300s ≤ t ≤ 400s). The final
drag, lift and moment coefficients in the simulation are very close to the calculated optimal values, with a
small difference of 0.00004, 0.001 and 0.00001 respectively. This difference is due to the dissimilarity between
the estimated aerodynamic parameters and the “true” aerodynamic parameters and the slight deviation of
the actual elevator deflection in comparison with the calculated optimal elevator deflection.
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Figure 17. VCCTEF Deflections

Figure 18. Elevator Deflection
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Figure 19. Nonlinear Rigid Body Flight Dynamic States

Figure 20. Nonlinear Aeroelastic Flight Dynamic States
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Figure 21. Aerodynamic Coefficients

VII. Discussion

It is important to qualify the limitations and assumptions in the model used for this study that may
affect the drag reduction assessments. First of all, the AVL model used in this study is an inviscid code not
capable of directly calculating viscous drag and wave drag contributions. A constant viscous drag component
is added in the simulation. In future studies, the effect of viscous drag and wave drag will be considered.

Secondly, the spanwise deflections of the VCCTEF are constrained to a fifth-degree Chebyshev polyno-
mial. From the optimization results in Fig. 12 this shape function seems sufficient, however a consideration
would be to model the inboard and outboard flap sections of the VCCTEF with two separate polynomials.
The optimal number of spanwise flaps and the shape of the cambered flap deflection should also be con-
sidered, especially when viscous and transonic effects are incorporated in the drag model. Future work on
the design of the VCCTEF will include studies of the optimum shape between the individual flap sections,
the optimum number of spanwise flaps, and the optimum shape between the chordwise flap segments. The
optimization study for the number of spanwise flaps should be a trade study that includes the weight of the
flap sections.

Thirdly, in the recursive least squares approach the Mach number is assumed to stay constant (M = 0.8),
although during the simulation the Mach number varied slightly (0.78 ≤M ≤ 0.80). The effect of the Mach
number on the aerodynamic coefficient parameters could be assessed similarly as is done in the modeling
of the truth model (see Eqs. 48 to 55). If the Mach number should be considered in the RLS identification
algorithm, the excitation of the estimated parameters should allow for enough varying input with respect to
the Mach number. This could be studied in future research on the RLS identification algorithm, although
from an operational consideration it is not practical to change the airspeed during cruise.

The recursive least squares algorithm is not able to accurately identify the aerodynamic parameters with
respect to the wing tip bending wt. Further research should be done to improve the identification of all the
aerodynamic coefficient parameters.

Furthermore, the effect of sensor noise in the aerodynamic parameters and estimated variables on the
RLS identification algorithm is not taken into consideration in this study. This would be an important
consideration for further studies.

It should be noted that the proposed adaptive real-time drag minimization strategy will depend largely
on sensor technologies that would enable in-flight drag measurements. If the aircraft is in trim, the engine
thrust and the aerodynamic drag force are in balance. Thus, the drag force can be inferred from the engine
thrust. In practice, engine thrust is not a quantity that could be measured directly. For certain commercial
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engines, fuel flow meters are available and could be used to estimate engine thrust via calibration. Other
forms of engine thrust measurements could be considered such as strain gauges and load sensors which can
be calibrated with engine static thrust to provide a relationship for estimating in-flight engine thrust. Since
the wing shape has a profound impact on drag, it is a possibility that future innovative sensors could be
developed to measure the in-flight wing shape deflection directly. The wing shape could be calibrated with
aerodynamic drag measurements in wind tunnel tests or drag computation from CFD to provide a means
for in-flight drag estimation. NASA has recently developed a fiber-optic shape sensor (FOSS) technology
which could be used in this application.

VIII. Conclusions

The introduction of lightweight modern materials into the airframe structure, with the goal of lowering
the aircraft weight and consequently reducing fuel consumption, has increased the flexibility of modern
aircraft wings. This flexibility may negatively impact the wing aerodynamic characteristics by altering the
optimal wing shape undesirably when the wings are under load. This potential negative impact could be
alleviated by actively shaping the wings in order to achieve desirable aerodynamic characteristics. One way
of achieving this wing shaping is through a flap system such as the variable camber continuous trailing
edge flap (VCCTEF). The VCCTEF configuration can be optimized using various optimization methods to
minimize drag at different cruise conditions. By doing this, the flexibility is exploited to control the shape
of the wing during flight and consequently restore the aerodynamic efficiency.

This study involves determining the optimal VCCTEF configuration for minimum drag in real-time during
cruise conditions for the NASA Generic Transport Model (GTM) aircraft. The Athena Vortex Lattice (AVL)
method is used as the aircraft aerodynamic modeling tool. This aerodynamic model is approximated by a
truth model. The truth model shows good agreement with the AVL model with average errors below 1% for
all aerodynamic coefficients and local coefficient distributions.

A recursive least-squares identification algorithm is built to estimate the aerodynamic parameters in real-
time. The estimation errors show that this approach can give accurate approximations for the aerodynamic
coefficients. The percentage errors of the estimation of the aerodynamic coefficient parameters are below
16%, 6% and 10% percent for the drag, lift and moment parameters, respectively, with the exception of the
parameters with respect to wt.

Iterative refinement optimization is used to update the estimated coefficients by perturbing the VCCTEF
close to the previously found optimal solution to identify an improved optimal solution. This approach can
be effective in identifying a new optimum in a close proximity to the previous calculated optimal solution.

The drag minimization algorithm is able to find the optimal VCCTEF configuration, while conforming to
several constraints. The optimal VCCTEF is able to reduce the induced drag by 2.9 drag count in comparison
with a clean wing configuration at the design cruise condition. The optimal VCCTEF configuration drives
the local lift distribution towards the more aerodynamically efficient elliptical lift distribution.

The simulation study of the real-time adaptive least-squares drag minimization shows the excitation of
the states and the convergence of the states to the minimum drag configuration. The linear controller is
not able to hold the altitude during the excitation period, however succeeds in stabilizing the aircraft after
the excitation. A nonlinear controller may provide a better altitude-hold flight control mode, but with an
increase in complexity. The simulation shows that the α, wt and θt converge closely to their calculated
optimal values when the VCCTEF is deflected to the optimal configuration. From this, we can conclude
that these states follow the relations as defined in the constraints of the drag minimization algorithm. The
aerodynamic coefficients are excited significantly during the excitation period and converge to their optimal
values when the VCCTEF is deflected at the calculated optimal configuration.

In previous studies it is shown that the VCCTEF can reduce drag significantly at off design cruise con-
ditions.3 The current study shows that the VCCTEF is also able to reduce drag at design cruise conditions.
We can conclude that active wing shaping through the VCCTEF is a promising solution to minimize drag
during flight at both design and off-design cruise conditions.
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