576,775 research outputs found

    Meson-Nucleon Vertex Form Factors at Finite Temperature Using a Soft Pion Form Factor

    Get PDF
    The temperature and density dependence of the meson-nucleon vertex form factors is studied in the framework of thermofield dynamics. Results are obtained for two rather different nucleon-nucleon potentials: the usual Bonn potential and the variation with a softer πNN\pi NN form factor, due to Holinde and Thomas. In general, the results show only a modest degree of sensitivity to the choice of interaction.Comment: 5 pages, uses revtex

    Deterministic creation of stationary entangled states by dissipation

    Full text link
    We propose a practical physical system for creation of a stationary entanglement by dissipation without employing the environment engineering techniques. The system proposed is composed of two perfectly distinguishable atoms, through their significantly different transition frequencies, with only one atom addressed by an external laser field. We show that the arrangement would easily be realized in practice by trapping the atoms at the distance equal to the quarter-wavelength of a standing-wave laser field and locating one of the atoms at a node and the other at the successive antinode of the wave. The undesirable dipole-dipole interaction between the atoms, that could be large at this small distance, is adjusted to zero by a specific initial preparation of the atoms or by a specific polarization of the atomic dipole moments. Following this arrangement, we show that the dissipative relaxation can create a stationary entanglement on demand by tuning the Rabi frequency of the laser field to the difference between the atomic transition frequencies. The laser field dresses the atom and we identify that the entangled state occurs when the frequency of one of the Rabi sidebands of the driven atom tunes to frequency of the undriven atom. It is also found that this system behaves as a cascade open system where the fluorescence from the dressed atom drives the other atom with no feedback.Comment: Published versio

    Fitting isochrones to open cluster photometric data III. Estimating metallicities from UBV photometry

    Full text link
    The metallicity is a critical parameter that affects the correct determination fundamental characteristics stellar cluster and has important implications in Galactic and Stellar evolution research. Fewer than 10 % of the 2174 currently catalog open clusters have their metallicity determined in the literature. In this work we present a method for estimating the metallicity of open clusters via non-subjective isochrone fitting using the cross-entropy global optimization algorithm applied to UBV photometric data. The free parameters distance, reddening, age, and metallicity simultaneously determined by the fitting method. The fitting procedure uses weights for the observational data based on the estimation of membership likelihood for each star, which considers the observational magnitude limit, the density profile of stars as a function of radius from the center of the cluster, and the density of stars in multi-dimensional magnitude space. We present results of [Fe/H] for nine well-studied open clusters based on 15 distinct UBV data sets. The [Fe/H] values obtained in the ten cases for which spectroscopic determinations were available in the literature agree, indicating that our method provides a good alternative to determining [Fe/H] by using an objective isochrone fitting. Our results show that the typical precision is about 0.1 dex

    Machining and grinding of ultrahigh-strength steels and stainless steel alloys

    Get PDF
    Machining and grinding of ultrahigh-strength steels and stainless steel alloy

    Current-driven vortex dynamics in untwinned superconducting single crystals

    Get PDF
    Current-driven vortex dynamics of type-II superconductors in the weak-pinning limit is investigated by quantitatively studying the current-dependent vortex dissipation of an untwinned YBa2Cu3O7 single crystal. For applied current densities (J) substantially larger than the critical current density (Jc), non-linear resistive peaks appear below the thermodynamic first-order vortex-lattice melting transition temperature (Tm), in contrast to the resistive hysteresis in the low-current limit (J < Jc). These resistive peaks are quantitatively analysed in terms of the current-driven coherent and plastic motion of vortex bundles in the vortex-solid phase, and the non-linear current - voltage characteristics are found to be consistent with the collective flux-creep model. The effects of high-density random point defects on the vortex dynamics are also investigated via proton irradiation of the same single crystal. Neither resistive hysteresis at low currents nor peak effects at high currents are found after the irradiation. Furthermore, the current-voltage characteristics within the instrumental resolution become completely ohmic over a wide range of currents and temperatures, despite theoretical predictions of much larger Jc-values for the given experimental variables. This finding suggests that the vortex-glass phase, a theoretically proposed low-temperature vortex state which is stabilized by point disorder and has a vanishing resistivity, may become unstable under applied currents significantly smaller than the theoretically predicted Jc. More investigation appears necessary in order to resolve this puzzling issue

    Thermally activated escape rates of uniaxial spin systems with transverse field

    Full text link
    Classical escape rates of uniaxial spin systems are characterized by a prefactor differing from and much smaller than that of the particle problem, since the maximum of the spin energy is attained everywhere on the line of constant latitude: theta=const, 0 =< phi =< 2*pi. If a transverse field is applied, a saddle point of the energy is formed, and high, moderate, and low damping regimes (similar to those for particles) appear. Here we present the first analytical and numerical study of crossovers between the uniaxial and other regimes for spin systems. It is shown that there is one HD-Uniaxial crossover, whereas at low damping the uniaxial and LD regimes are separated by two crossovers.Comment: 4 PR pages, 3 figures, final published versio

    Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks

    Get PDF
    Context. Observations at sub-millimeter and mm wavelengths will in the near future be able to resolve the radial dependence of the mm spectral slope in circumstellar disks with a resolution of around a few AU at the distance of the closest star-forming regions. Aims. We aim to constrain physical models of grain growth and fragmentation by a large sample of (sub-)mm observations of disks around pre-main sequence stars in the Taurus-Auriga and Ophiuchus star-forming regions. Methods. State-of-the-art coagulation/fragmentation and disk-structure codes are coupled to produce steady-state grain size distributions and to predict the spectral slopes at (sub-)mm wavelengths. Results. This work presents the first calculations predicting the mm spectral slope based on a physical model of grain growth. Our models can quite naturally reproduce the observed mm-slopes, but a simultaneous match to the observed range of flux levels can only be reached by a reduction of the dust mass by a factor of a few up to about 30 while keeping the gas mass of the disk the same. This dust reduction can either be due to radial drift at a reduced rate or during an earlier evolutionary time (otherwise the predicted fluxes would become too low) or due to efficient conversion of dust into larger, unseen bodies.Comment: Accepted for publication in A&A Letters. 5 pages, 3 figure

    A Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process

    Full text link
    A new vehicular traffic flow model based on a stochastic jump process in vehicle acceleration and braking is introduced. It is based on a master equation for the single car probability density in space, velocity and acceleration with an additional vehicular chaos assumption and is derived via a Markovian ansatz for car pairs. This equation is analyzed using simple driver interaction models in the spatial homogeneous case. Velocity distributions in stochastic equilibrium, together with the car density dependence of their moments, i.e. mean velocity and scattering and the fundamental diagram are presented.Comment: 27 pages, 6 figure
    • 

    corecore