6,481 research outputs found
TeV Gamma Rays from Geminga and the Origin of the GeV Positron Excess
The Geminga pulsar has long been one of the most intriguing MeV-GeV gamma-ray
point sources. We examine the implications of the recent Milagro detection of
extended, multi-TeV gamma-ray emission from Geminga, finding that this reveals
the existence of an ancient, powerful cosmic-ray accelerator that can plausibly
account for the multi-GeV positron excess that has evaded explanation. We
explore a number of testable predictions for gamma-ray and electron/positron
experiments (up to ~100 TeV) that can confirm the first "direct" detection of a
cosmic-ray source.Comment: 4 pages and 3 figures; Minor revisions, accepted for publication in
Physical Review Letter
Spectropolarimetric observations of the Ca II 8498 A and 8542 A lines in the quiet Sun
The Ca II infrared triplet is one of the few magnetically sensitive
chromospheric lines available for ground-based observations. We present
spectropolarimetric observations of the 8498 A and 8542 A lines in a quiet Sun
region near a decaying active region and compare the results with a simulation
of the lines in a high plasma-beta regime. Cluster analysis of Stokes V profile
pairs shows that the two lines, despite arguably being formed fairly close,
often do not have similar shapes. In the network, the local magnetic topology
is more important in determining the shapes of the Stokes V profiles than the
phase of the wave, contrary to what our simulations show. We also find that
Stokes V asymmetries are very common in the network, and the histograms of the
observed amplitude and area asymmetries differ significantly from the
simulation. Both the network and internetwork show oscillatory behavior in the
Ca II lines. It is stronger in the network, where shocking waves, similar to
those in the high-beta simulation, are seen and large self-reversals in the
intensity profiles are common.Comment: 23 pages, 17 figures, accepted to ApJ some figures are low-res, for
high-res email [email protected]
Homographically generated light sheets for the microscopy of large specimens.
We compare the performance of linear and nonlinear methods for aligning the excitation and detection planes throughout volumes of large specimens in digitally scanned light sheet microscopy. An effective nonlinear method involves the registration of four corner extrema of the imaging volume via a projective transform. We show that this improves the light collection efficiency of the commonly used three-point affine registration by an average of 42% over a typical specimen volume. Accurate illumination/detection registration methods are now pertinent to biological research in view of current trends towards imaging large or expanded samples, at depth, with diffraction limited resolution
Gamma-Ray Burst Afterglows from Realistic Fireballs
A GRB afterglow has been commonly thought to be due to continuous
deceleration of a postburst fireball. Many analytical models have made
simplifications for deceleration dynamics of the fireball and its radiation
property, although they are successful at explaining the overall features of
the observed afterglows. We here propose a model for a GRB afterglow in which
the evolution of a postburst fireball is in an intermediate case between the
adiabatic and highly radiative expansion. In our model, the afterglow is both
due to the contribution of the adiabatic electrons behind the external
blastwave of the fireball and due to the contribution of the radiative
electrons. In addition, this model can describe evolution of the fireball from
the extremely relativistic phase to the non-relativistic phase. Our
calculations show that the fireball will go to the adiabatic expansion phase
after about a day if the accelerated electrons are assumed to occupy the total
internal energy. In all cases considered, the fireball will go to the mildly
relativistic phase about seconds later, and to the non-relativistic
phase after several days. These results imply that the relativistic adiabatic
model cannot describe the deceleration dynamics of the several-days-later
fireball. The comparison of the calculated light curves with the observed
results at late times may imply the presence of impulsive events or energy
injection with much longer durations.Comment: 18 pages, 10 figures, plain latex file, submitted to Ap
Physical parameters of GRB 970508 and GRB 971214 from their afterglow synchrotron emission
We have calculated synchrotron spectra of relativistic blast waves, and find
predicted characteristic frequencies that are more than an order of magnitude
different from previous calculations. For the case of an adiabatically
expanding blast wave, which is applicable to observed gamma-ray burst (GRB)
afterglows at late times, we give expressions to infer the physical properties
of the afterglow from the measured spectral features.
We show that enough data exist for GRB970508 to compute unambiguously the
ambient density, n=0.03/cm**3, and the blast wave energy per unit solid angle,
E=3E52 erg/4pi sr. We also compute the energy density in electrons and magnetic
field. We find that they are 12% and 9%, respectively, of the nucleon energy
density and thus confirm for the first time that both are close to but below
equipartition.
For GRB971214, we discuss the break found in its spectrum by Ramaprakash et
al. (1998). It can be interpreted either as the peak frequency or as the
cooling frequency; both interpretations have some problems, but on balance the
break is more likely to be the cooling frequency. Even when we assume this, our
ignorance of the self-absorption frequency and presence or absence of beaming
make it impossible to constrain the physical parameters of GRB971214 very well.Comment: very strongly revised analysis of GRB971214 and discussion, submitted
to ApJ, 11 pages LaTeX, 4 figures, uses emulateapj.sty (included
VLA Limits for Intermediate Mass Black Holes in Three Globular Clusters
The observational evidence for central black holes in globular clusters has
been argued extensively, and their existence has important consequences for
both the formation and evolution of the cluster. Most of the evidence comes
from dynamical arguments, but the interpretation is difficult, given the short
relaxation times and old ages of the clusters. One of the most robust
signatures for the existence of a black hole is radio and/or X-ray emission. We
observed three globular clusters, NGC6093 (M80), NGC6266 (M62), and NGC7078
(M15), with the VLA in the A and C configuration with a 3-sigma noise of 36, 36
and 25 microJy, respectively. We find no statistically-significant evidence for
radio emission from the central region for any of the three clusters. NGC6266
shows a 2-sigma detection. It is difficult to infer a mass from these upper
limits due to uncertainty about the central gas density, accretion rate, and
accretion model.Comment: 5 pages, accepted for publication in the Astronomical Journa
Radiative Shock-Induced Collapse of Intergalactic Clouds
Accumulating observational evidence for a number of radio galaxies suggests
an association between their jets and regions of active star formation. The
standard picture is that shocks generated by the jet propagate through an
inhomogeneous medium and trigger the collapse of overdense clouds, which then
become active star-forming regions. In this contribution, we report on recent
hydrodynamic simulations of radiative shock-cloud interactions using two
different cooling models: an equilibrium cooling-curve model assuming solar
metallicities and a non-equilibrium chemistry model appropriate for primordial
gas clouds. We consider a range of initial cloud densities and shock speeds in
order to quantify the role of cooling in the evolution. Our results indicate
that for moderate cloud densities (>1 cm^{-3}) and shock Mach numbers (<20),
cooling processes can be highly efficient and result in more than 50% of the
initial cloud mass cooling to below 100 K. We also use our results to estimate
the final H_2 mass fraction for the simulations that use the non-equilibrium
chemistry package. This is an important measurement, since H_2 is the dominant
coolant for a primordial gas cloud. We find peak H_2 mass fractions of >0.01
and total H_2 mass fractions of >10^{-5} for the cloud gas. Finally, we compare
our results with the observations of jet-induced star formation in
``Minkowski's Object.'' We conclude that its morphology, star formation rate (~
0.3M_solar/yr) and stellar mass (~ 1.2 x 10^7 M_solar) can be explained by the
interaction of a 90,000 km/s jet with an ensemble of moderately dense (~ 10
cm^{-3}), warm (10^4 K) intergalactic clouds in the vicinity of its associated
radio galaxy at the center of the galaxy cluster.Comment: 30 pages, 7 figures, submitted to Astrophysical Journa
Cosmic Renaissance: The First Sources of Light
I review recent progress in understanding the formation of the first stars
and quasars. The initial conditions for their emergence are given by the now
firmly established model of cosmological structure formation. Numerical
simulations of the collapse and fragmentation of primordial gas indicate that
the first stars formed at redshifts z ~ 20 - 30, and that they were
predominantly very massive, with M_* > 100 M_sun. Important uncertainties,
however, remain. Paramount among them is the accretion process, which builds up
the final stellar mass by incorporating part of the diffuse, dust-free envelope
into the central protostellar core. The first quasars, on the other hand, are
predicted to have formed later on, at z ~ 10, in more massive dark matter
halos, with total masses, ~ 10^8 M_sun, characteristic of dwarf galaxies.Comment: 16 pages, 7 figures, invited review, to appear in PASP, Feb. 200
The onset of convection in horizontally partitioned porous layers
In this paper, the onset of convection in a horizontally partitioned porous layer is investigated. Two identical sublayers are separated by a thin impermeable barrier. There exists a background horizontal flow in one of the layers or, equivalently, flows of half that strength in each sublayer but in opposite directions. A linearised stability analysis is performed where the horizontal component of the disturbance is factored into separate Fourier modes, leaving an ordinary differential eigenvalue problem for the critical Darcy-Rayleigh number as a function of the wavenumber. The dispersion relation is derived and the neutral stability curves are obtained for a wide range of horizontal flow rates. The presence of the horizontal flow alters the morphology of the neutral curves from that which occurs when there is no flow and travelling modes may arise. We also determine the condition under which the most dangerous disturbance changes from a stationary mode to travelling mode. Some three-dimensional aspects are also considered. (C) 2011 American Institute of Physics. [doi:10.1063/1.3589864
Structural Evidence for Asymmetrical Nucleotide Interactions in Nitrogenase
The roles of ATP hydrolysis in electron-transfer (ET) reactions of the nitrogenase catalytic cycle remain obscure. Here, we present a new structure of a nitrogenase complex crystallized with MgADP and MgAMPPCP, an ATP analogue. In this structure the two nucleotides are bound asymmetrically by the Fe-protein subunits connected to the two different MoFe-protein subunits. This binding mode suggests that ATP hydrolysis and phosphate release may proceed by a stepwise mechanism. Through the associated Fe-protein conformational changes, a stepwise mechanism is anticipated to prolong the lifetime of the Fe-protein-MoFe-protein complex and, in turn, could orchestrate the sequence of intracomplex ET required for substrate reduction
- …