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In this paper, the onset of convection in a horizontally partitioned porous layer is investigated. Two 
identical sublayers are separated by a thin impermeable barrier. There exists a background 
horizontal flow in one of the layers or, equivalently, flows of half that strength in each sublayer but 
in opposite directions. A linearised stability analysis is performed where the horizontal component 
of the disturbance is factored into separate Fourier modes, leaving an ordinary differential 
eigenvalue problem for the critical Darcy-Rayleigh number as a function of the wavenumber. The 
dispersion relation is derived and the neutral stability curves are obtained for a wide range of 
horizontal flow rates. The presence of the horizontal flow alters the morphology of the neutral 
curves from that which occurs when there is no flow and travelling modes may arise. We also 
determine the condition under which the most dangerous disturbance changes from a stationary 
mode to travelling mode. Some three-dimensional aspects are also considered. V 2011 American C 

Institute of Physics. [doi:10.1063/1.3589864] 

I. INTRODUCTION 

Convection in a horizontal porous layer heated from 
below is now regarded as one of the classical and fundamental 
problems in stability analysis even though it also has a consid

erable importance in engineering applications such as CO2 

sequestration, oil recovery techniques, insulation technology, 
packed-bed catalytic reactors, and heat storage beds. Termed 
the Horton-Rogers-Lapwood or Darcy–Bénard problem, 
Horton and Rogers1 and Lapwood2 were the first to show that 
convection arises in a uniform unbounded horizontal layer 
heated from below occurs when the Darcy-Rayleigh number 
is above 4p2. The corresponding wavenumber is p, which  
means that the cells which first appear have a unit aspect ratio. 

Prats3 investigated the effect of a uniform horizontal 
pressure gradient on the onset problem for the Darcy-Bénard 
problem and found that the resulting horizontal flow does 
not affect the critical Rayleigh number. The full governing 
equations, when written in a frame of reference which moves 
with the flow, remain identical to those which apply when 
the flow is absent. Therefore, all the nonlinear dynamics 
which arise for the classical Darcy-Bénard problem in an 
unbounded layer are unchanged by the presence of the flow. 
No doubt that the presence of Brinkman effects and Local 
Thermal Nonequilibrium will alter this conclusion, but anal

ysis of these types have not yet appeared in the open 
literature. 

Layered porous media are ubiquitous both in nature and 
industrial applications, and numerous studies have been 
made of these cases. Although it was not the first paper on 
the topic, a very comprehensive analysis of the onset of con

vection was undertaken by McKibbin and O’Sullivan,4 who 
considered two- and three-sublayer configurations. It was 
found that the neutral curve sometimes exhibits two local 
minima thereby allowing the identity of the critical mode of 
convection to change discontinuously as the system parame

ters change smoothly. This work was later extended into the 

weakly nonlinear regime by McKibbin and O’Sullivan.5 

Rees and Riley6 also provided a weakly nonlinear stability 
analysis and showed that some configurations give rise natu

rally to three-dimensional convection patterns. A similar 
conclusion was obtained earlier by Riahi,7 who considered a 
classical Darcy-Bénard layer sandwiched between two con

ducting solid regions. Other notable works on layered media 
have been undertaken by Masuoka et al.8 and Rana et al.9 

McKibbin10 investigated the effects of the presence of 
an impermeable but conducting layer interposed between the 
heat source below and the base of an otherwise homogene

ous aquifer. He found that the presence of a layer of imper

meable material between the heat source and the saturated 
layer markedly affects the aspect ratio of convection cells 
and the heat flux when compared with those which occur 
when the heat source is in direct contact with the base of the 
aquifer. Another analysis of the linear stability characteris

tics of two horizontal porous layers separated by a conduc

tive partition was undertaken by Jang and Tsai.11 They 
showed that the system is at its most stable when the parti

tion is located centrally, and the system also becomes more 
stable as the partition thickness increases or the partition 
conductivity decreases. 

The aim of the present work is to determine the effect of 
the presence of a partition within a porous layer heated from 
below, and to allow different horizontal flows to exist within 
the two sublayers, which are caused by two different pres

sure gradients. The partition will be considered to be infini

tesimally thin and completely impermeable so that the 
sublayers remain thermally coupled, but are mechanically 
decoupled. In addition, the sublayers are of identical thick

nesses and properties. Given that the convection cells have a 
tendency to move with the background flow, the presence of 
different flows in each sublayer combined with the thermal 
coupling between the layers means that there will be a com

petition between the sublayers. 
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The analysis we present is confined to a linearised sta

bility theory, and we will show that the onset of convection 
may correspond either to a stationary pattern (when viewed 
in the correct frame of reference) or, when flow rates are 
sufficiently high, to two different travelling wave patterns. 
When one is not confined to two-dimensional flow and the 
background pressure gradients are not in the same direc

tion, then it is possible to show that there is a roll direction 
which minimises the critical Darcy-Rayleigh number, and a 
simple formula is obtained for the direction of the axis of 
that roll. 

II. GOVERNING EQUATIONS 

The main aim of this study is to investigate the onset of 
convection within a uniform horizontal porous layer, which 
is heated isothermally from below and cooled isothermally 
from above, and within which a thin horizontal impermeable 
partition is placed; the configuration is as shown in Fig. 1. 

When there is no applied horizontal pressure gradient, 
the basic state is one of no motion. We may, without any 
loss of generality, impose opposing pressure gradients in the 
two sublayers; any other situation may be reduced to this by 
the introduction of a suitable moving frame of reference in 
the manner of Prats.3 

We assume that the Boussinesq approximation is valid 
and that the fluid motion satisfies Darcy’s law with the addi

tional effect of buoyancy. Initially, we consider only two-

dimensional convection in the ðx; zÞ-plane, as shown in Fig. 1, 
and the nondimensional governing equations are given by, 

@uj @wj 

@x 
þ
@z 
¼ 0; (1) 

@pj @pj
uj ¼ �

@x 
; wj ¼ �

@z 
þ Ra hj; (2) 

@hj @hj @hj @2hj @2hj 

@t 
þ uj 

@x 
þ w 

@z 
¼
@x2 
þ
@z2 

; (3) 

where u and w are the horizontal and vertical flux velocities, 
respectively, p is the pressure, h the temperature, and t the 
time. The values j ¼ 1; 2 denote the identity of the sublayer, 
which is being considered. In the above, Ra is the Darcy-

Rayleigh number: 

Ra ¼ 
qðqCÞf ĝbHKDT 

: (4)
lj 

Here, H is the height of a sublayer, rather than of the full 
layer (which has dimensional height, 2H) and DT is the basic 
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temperature drop across a sublayer. These choices have been 
made so that our results may be compared directly with the 
classical single-layer configuration. Moreover, q is the den

sity, C the heat capacity, ĝ gravity, b the coefficient of cubi

cal expansion, K permeability, l the dynamic viscosity, and 
j the thermal diffusivity. Nondimensionalisation has taken 
place using H, H2ðqCÞm =j, and j=HðqCÞf as scales of 
length, time, and velocity, respectively, where the subscripts 
f and m correspond to fluid and effective properties of the 
porous medium, respectively. 

The streamfunction w is defined using, 

@wj @wj
uj ¼ �

@z 
; wj ¼

@x 
; (5) 

and, therefore, the non-dimensional equations take the fol

lowing forms: 

@2wj @2wj @hj 

@x2 
þ
@z2 
¼ Ra 

@x 
; 

(6) 
@hj @wj @hj @wj @hj @2hj @2hj 

@t 
þ
@x @z 

�
@z @x 

¼
@x2 
þ
@z2 

: 

We impose different pressure gradients in the x-direction in 
the two sublayers and these are such that the basic velocity 
fields in the two sublayers, 

u
ð
1 
bÞ ¼ 1

2 
U; u

ð
2 
bÞ ¼ �  1

2 
U; (7) 

where U is termed the velocity differential. Therefore, the 
equations are to be solved subject to the boundary and inter

face conditions, 

z ¼ 0: w1 ¼ 0; h ¼ 2; 

z ¼ 1: w1 ¼ w2 ¼ 
1 
2 

U; h1 ¼ h2; 
@h1 

@z 
¼ @h2 

@z 
: (8) 

z ¼ 2: w2 ¼ 0; h ¼ 0: 

We note that the constant conditions for w1 and w2 express 
the fact that the interface and boundaries are impermeable, 
while the continuity conditions for the temperature and its 
vertical derivative at z ¼ 1 represent the fact that the conduc

tion is unhindered by the presence of the partition. 

III. LINEAR STABILITY ANALYSIS 

The basic state consists of different uniform horizontal 
flows within the respective sublayers and a linear tempera

ture drop, and it is 

hð1 
bÞ ¼ hð2 

bÞ ¼ 2 � z; wð1 
bÞ ¼ 1

2 
U z; wð2 

bÞ ¼ 1
2 

U ð2 � zÞ: (9) 

The conditions governing the onset of convection are deter

mined by using a linear stability analysis. Thus the basic so

lution is perturbed as follows; we substitute 

wj ¼ wðj
bÞ þWj; hj ¼ hðj

bÞ þHj; (10) 

into Eq. (6), and then linearise for W and H,FIG. 1. Geometry of the horizontally partitioned porous medium. 
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@2Wj @2Wj @Hj 

@x2 
þ

@z2 
¼ Ra 

@x 
; 

(11) 
@

@

H
t

j þ u
ð
j
bÞ @

@

H
x

j � @
@

W
x

j ¼ @
@

2

x

H
2 

j þ @
@

2

z

H
2 

j 
: 

This partial differential system may be transformed into ordi

nary differential eigenvalue form by factoring out a horizon

tal Fourier mode with wavenumber, k, as follows: 

Wj ¼ i fjðzÞ e ktþikx þ c:c:; Hj ¼ gjðzÞ e ktþikx þ c:c:; (12) 

where c.c. denotes the complex conjugate and k is the com

plex exponential growth rate. Equation (11) now becomes, 

fj
00 � k2fj ¼ Ra k gj; gj

00 � k2 gj � iku
ð
j
bÞ

gj � kfj ¼ kgj; (13) 

subject to the boundary and interface conditions, 

z ¼ 0: f1 ¼ g1 ¼ 0;


z ¼ 1: f1 ¼ f2 ¼ 0; g1 ¼ g2; g01 ¼ g02; (14)


z ¼ 2: f2 ¼ g2 ¼ 0:


Equations (13) and (14) represent an eigenvalue problem for 
k in terms of k and Ra. The solutions for f and g are complex 
when the velocity differential, U, is nonzero. When the real 
part of k is zero then disturbances neither grow nor decay 
and this is termed neutral stability. 

The neutral curves were obtained by a variety of meth

ods, including (i) a suitably modified shooting method code 
coupled with a fourth order Runge-Kutta method, (ii) a ma

trix eigenvalue solver, which is applied after Eq. (13) was 
discretised by using a second order central difference for

mula on a uniform grid (see Rees and Bassom12 for details), 
and (iii) the analytical determination of a complex dispersion 
relation (see Appendix A). In the case of the first method, it 
was necessary to adopt a normalization constraint of the 
form g0ð0Þ ¼  1. The two numerical methods were used to 
verify the correctness of the somewhat complicated complex 
dispersion relation given in Eq. (A1) and therefore, we omit 
the details of their implementation. In the present paper, all 
our results were obtained by analysis of the dispersion rela

tion and, therefore, our data are, to all intents and purposes, 
exact. Solutions were obtained using Newton-Raphson itera

tion with an extremely small convergence tolerance. 

IV. TWO-DIMENSIONAL RESULTS FOR U ¼ 0 

When the velocity differential is zero, the dispersion 
relation may be found by attempting to solve Eq. (13) ana

lytically. The application of the boundary and interface con

ditions, Eq. (14), results in the dispersion relation. We found 
that for even–numbered modes, we have 

sin r1 ¼ 0; (15) 

while for odd numbered modes, we have 

r1 cos r1 sinh r2 þ r2 cosh r2 sin r1 ¼ 0; (16) 

where the quantities, r1 and r2 are given by, 
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qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffi ffiffiffiffiffiffi 
r1 ¼ k

p
Ra � k2; r2 ¼ k

p
Ra þ k2: (17) 

Equation (15) yields the neutral curve for the classical sin

gle-layer Darcy-Bénard problem, 

n p
Ra ¼ ðk

2 þ 2 2Þ 2 

; for n ¼ 1; 2; :  : :;  (18)
k2 

while Eq. (16) cannot be rearranged to yield Ra explicitly in 
terms of k. 

Figure 2 shows the first four neutral modes. All the 
curves have a single minimum and Ra becomes asymptoti

cally large as either k ! 0 or  k !1. Modes 2 and 4 corre

spond to the n ¼ 1 and n ¼ 2 Darcy-Bénard modes given by 
Eq. (18). Figure 3 shows the z-profiles for f and g for modes 
1 and 2. The solutions are scaled in such a way that g has a 
unit slope on the lower surface. When the wavenumber is 
small, the thermal profile for mode 1 has a single maximum 
and has a shape which is similar to half of a sine wave. As k 
increases, the central part of the profile reduces until it has 
two identical maxima and a minimum at the interface. All 
the while, the streamfunction profile maintains the same sign 
and corresponds to a pair of stacked co-rotating cells. On the 
other hand, mode 2, being the usual mode 1 for the classical 
Darcy-Bénard problem, consists of a profile which is pre

ciesly one period of a sine wave, and it corresponds to a 
stacked pair of counter-rotating cells. 

The critical Darcy-Rayleigh number for mode 1 may be 
found easily by minimising the numerical value of Ra with 
respect to k; this process yields the value, Rac ¼ 2:74556p2, 
which should be compared with 4p2 for mode 2. The re

spective critical wavenumbers for modes 1 and 2 are k=p 
¼ 0:74046 and precisely 1. Thus, the convection pattern for 
mode 1 is approximately 35% wider than for mode 2. 

Figure 2 also indicates that the neutral curves for modes 
1 and 2 become very close indeed when k is large, which is 

FIG. 2. The neutral curves corresponding to the first four modes of instabil

ity for U ¼ 0. 
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unusual behaviour. Using an asymptotic analysis of 
Eqs. (16) and (18), it is possible to show that the critical val

ues of Rac have the forms, 
ffiffiffi 

RaMode1 2 2k�1 4 2
c � k2 þ 2p � 2

p
2p þ ðp þ 3p Þk�2; 

(19) 
RaMode2

c ¼ k2 þ 2p 2 þ p 4k�2; 

when k is large, and therefore, the difference between these 
critical values is of Oðk�1Þ. By contrast, the separation 
between different curves for the classical Darcy-Bénard 
layer is of Oð1Þ when k is large. 

The observed behaviour of both f and g for mode 1, 
when k is large, suggests that a large- k analysis should be 
performed. We found that 

Mode1: f1 ��k sin pz; f2 � k sin pz; g1 � sin pz; 

g2 �� sin pz; (20) 

Mode2: f1 ��k sin pz; f2 ��k sin pz; g1 � sin pz; 

g2 � sin pz; (21) 

when k � 1. These expressions have been normalised so 
that the mode 1 and mode 2 solutions are identical in the 
lower layer, i.e., layer 1, but the consequence is that they 
have opposite signs in the upper layer. 

V. TWO-DIMENSIONAL RESULTS FOR U ¼6 0 

Given the symmetries inherent to the mathematical 
problem we have solved, we confine the presentation of our 
results to those cases for which U > 0. The dispersion rela

tion is now a complex expression, and it is given in 
Appendix A. 

Figure 4 depicts the neutral curves corresponding to the 
first and second modes for the velocity differentials, U ¼ 0, 
0:5, 1, 1:5, and 2. The presence of the background counter-

FIG. 3. Profiles of f and g for modes 1 
and 2 for U ¼ 0. 

flow alters the morphology of the neutral curves from that 
which occurs when there is no flow. For any nonzero flow 
rate, no matter how small, there always exists a wavenumber 
at which modes 1 and 2 merge into a complex pair of travel

ling modes as k increases. This transition arises at the turning 
point in the neutral curves (i.e., where the tangent to the sta

tionary-mode neutral curve is vertical) and it occurs at 
decreasing wavenumbers as the velocity differential, U, 
increases. The value of the Darcy-Rayleigh number at the 
turning point is denoted by RaTP. 

The corresponding neutral curves for the larger velocity 
differentials U ¼ 2:859, 4, and 6, are presented in Fig. 5. 
Although the general shape of these curves is the same as 

FIG. 4. The neutral curves corresponding to the first and second modes 
when U ¼ 0 (outermost), 0:5, 1, 1:5, and 2 (innermost). 
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FIG. 5. The neutral curves corresponding to the first and second modes 
when U ¼ 2:859, 4, and 6. 

those shown in Fig. 4, the important difference is that the low

est value of Ra now corresponds to a pair of travelling waves. 
Indeed, the value U ¼ 2:859 delineates the stationary convec

tion regime (U < 2:859) from the travelling waves regime 
(U > 2:859). The critical Rayleigh number at this transitional 
value of U is Rac ¼ 34:322 and the corresponding wavenum

bers are k ¼ 0:585p (stationary) and k ¼ 0:906p (travelling). 
It is quite clear from both Figs. 4 and 5 that the value of 

Ra for any chosen wavenumber for travelling modes varies 
very little as U varies, although the minimum value of the 
stationary part of the curves and the location of the turning 
point vary greatly. This is summarised graphically in Fig. 6, 
where we show the variation with U of the critical values 
(i.e., local minima) of the Rayleigh number for both station

ary and travelling modes. Thus Rac increases slowly and in a 
parabolic-like manner as U increases, but then the critical 
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mode switches suddenly to travelling modes and Rac is 
roughly constant. The reason for the roughly constant value 
of Rac for travelling modes is that the convection is now tak

ing place almost exclusively in one sublayer and, therefore, 
the presence of the counterflow in the other sublayer affects 
the stability criterion only very slightly. 

Figure 6 also shows the behaviour of the turning point in 
the stationary part of the neutral curve as U varies. This 
curve has its minimum when U ¼ 1:908 and, therefore, the 
travelling mode part of the neutral curve has a minimum (in 
the sense that the derivative of Ra with respect to k is zero) 
only when U > 1:908. This may be understood more clearly 
with reference to the U ¼ 2 curve in Fig. 4, where we see 
that the minimum in the travelling wave part of the curve is 
very close to the turning point in the stationary mode part of 
the curve. Thus the travelling mode branch shown in Fig. 6 
emerges from the minimum in the travelling wave curve 
when U ¼ 1:908. 

When the value of U decreases towards zero, Fig. 6 
shows clearly that the location of the turning point recedes 
towards infinity in both k and Ra, which we see in Fig. 4. A  
detailed analysis of this aspect is contained in Appendix B, 
but it is worth noting here that (i) the value of k at which the ffiffiffi 

2turning point may be found is given by k2 � 2 p
p

2=U and 
(ii) the corresponding value of Ra is, to order k�1, exactly 
midway between the critical values for modes 1 and 2, which 
are given in Eq. (19). 

The wavenumbers corresponding to the Rayleigh num

bers displayed in Fig. 6 are shown in Fig. 7. Here, we see the 
moderately slow reduction in the critical wavenumber for 
stationary modes as U increases, which was also seen in 
Fig. 4. Once the bullet symbol is encountered, then there is a 
sudden transition in the identity of the preferred mode to the 
travelling mode, and we see again that critical wavenumber 
hardly varies as U increases further. The travelling mode 
branch emerges from the turning point curve at U ¼ 1:908, 
as discussed earlier. 

FIG. 7. Variation with U of the values of k=p corresponding to the turning 
FIG. 6. Variation with U of the values of Ra corresponding to the turning point and to the minima in the neutral curve for both stationary and travel-

point and to the minima in the neutral curve for both stationary and travel- ling modes. Also shown is the transition point between stationary and travel

ling modes. ling waves forming the favoured mode (�). 
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Figure 8 shows the streamlines and isotherms corre

sponding to stationary modes for different values of U. 
When U ¼ 0, the pattern corresponds to the critical mode, 
but for the other values of U, the pattern corresponds to the 
turning point. The width of each frame shows the precise as

pect ratio of the pattern, given the value of the wavenumber. 
As U increases, an increasing distortion in the isotherms is 
induced, which indicates quite clearly that the background 
flow is from left to right in the lower layer and in the 

FIG. 9. Streamlines (left column) and isotherms (right column) for travel

ling mode convection for U ¼ 2 (uppermost), 4, and 6 (lowest). 

FIG. 8. Streamlines (left column) and 
isotherms (right column) for stationary 
mode convection for U ¼ 0 (upper

most), 2, 4,and 6 (lowest). 

opposite direction in the upper layer. The streamlines dis

play their own peculiar form of distortion by having the 
cells in one layer being displaced from their counterparts in 
the lower layer. 

Figure 9 shows the streamlines and isotherms for trav

elling modes and these correspond to values of the Ray

leigh number at the minimum of the travelling mode part 
of the neutral curves. When U ¼ 2, there is very little dif

ference between the strength of the pattern in the upper 
layer from that in the lower, but it is nevertheless discern-

able here. When U increases from this value, the convec

tion pattern becomes concentrated increasingly within the 
lower layer, with only a weak contribution in the upper 
layer. Thus the patterns shown are a snapshot in time, and 
they represent modes which are moving to the right. There

fore, the pattern at a later time differs from what is shown 
by the distance it has travelled along the layer. The corre

sponding left-moving patterns are obtained by rotating 
these frames through 180�, and they have exactly the same 
critical Rayleigh number. 

We also note that suitable combinations (i.e., the sum of 
equal-amplitude forms) of the two travelling waves will yield 
standing waves, which will oscillate in time with a periodic 
reversal of the direction of circulation of the convective cells. 
Whether this will arise in practice or whether travelling waves 
will be favoured can only be determined using a nonlinear 
analysis, which is outside the scope of the present work. 

VI. THREE-DIMENSIONAL CASES 

Finally, we generalise the two-dimensional cases con

sidered already to ones where the horizontal direction of the 
flows in the sublayers take arbitrary directions. Now we shall 
allow the basic velocity fields in the sublayers to have the 
forms, ðuðj

bÞ
; vðj

bÞÞ for j ¼ 1; 2. The linear stability analysis 
presented earlier has to be reworked and the most convenient 
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form for this is in terms of the vertical velocity and tempera

ture. The linearised stability equations, which are the three-

dimensional equivalent of Eq. (11) are 

@2Wj @2Wj @2Wj 
� 
@2Hj @2Hj 

� 
@x2 
þ
@y2 
þ
@z2 
¼Ra 

@x2 
þ
@y2 

; 
(22) 

@

@

H
t

j þu
ð
j
bÞ@

@

H
x

j þv
ð
j
bÞ@

@

H
y

j �Wj ¼ 
@

@

2

x

H
2 

j þ @
@

2

y

H
2 

j þ @
@

2

z

H
2 

j 
; 

where W is the vertical velocity disturbance. Roll solutions 
corresponding to axes at an angle, c, to the y-axis may now 
be introduced as follows: 

Wj ¼ �k fjðzÞ e ktþikðx cos c�y sin cÞ; 
(23) 

Hj ¼ gjðzÞ e ktþikðx cos c�y sin cÞ; 

where c ¼ 0 corresponds to the two-dimensional rolls con

sidered above. Equations (22) now become, 

fj
00 � k2fj ¼ Ra k gj; 

(24) 
gj
00 � k2 gj � ikðuðj

bÞ
cos c � v

ð
j
bÞ

sin cÞgj � kfj ¼ kgj; 

and are subject to the boundary and interface conditions 
given in Eq. (14). Equation (24) reduces to the form given 
by Eq. (13) when v

ð
1 
bÞ ¼ v

ð
2 
bÞ ¼ 0. Thus, given the form of 

the coefficient of ikgj in Eq. (24), and given that the critical 
value of Ra shown in Fig. 6 is an increasing function of U, it  
is clear that the minimising value of the roll orientation, c, is  
that one for which the value of ðuðj

bÞ
cos c � v

ð
j
bÞ

sin cÞ is the 
same in the two layers. This would then correspond to a sit

uation where the two background velocity components, 
which are perpendicular to the roll orientation are equal to 
one another. Therefore we need, 

u
ð
1 
bÞ

cos c � v
ð
1 
bÞ

sin c ¼ u
ð
2 
bÞ

cos c � v
ð
2 
bÞ

sin c; (25) 

to be true, and this may be rearranged to yield, 

u
ðbÞ � u

ðbÞ 
tan c ¼

v

1 
ðbÞ � v

ð
2 
bÞ : (26) 

1 2 

One example case is when the background flow is in the 
x-direction with strength, U, in layer 1 and in the y-direction 
also with strength, U, in layer 2. The above formula yields 
tan c ¼ �1, and hence c ¼ �45�. 

A	 second example is given by the two-dimensional 

cases considered earlier. If uð1 
bÞ

and uð2 
bÞ

take arbitrary values 

but vð1 
bÞ ¼ v

ð
2 
bÞ ¼ 0, then c ¼ 90�, and the preferred rolls lie 

in the direction of the x-axis, rather than in the direction of 
the y-axis, which corresponds to the two-dimensional flow 
considered above. 

In both these cases, when the optimum roll orientation 
forms the disturbance, the critical Darcy-Rayleigh number 
and the corresponding wavenumber correspond to when 
U ¼ 0 for two-dimensional convection. Thus, for the transi

tion to moving patterns to be observed in practice, it is essen

tial that the flow is forced to be two-dimensional by 
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restricting the width of the layer in the y-direction, or by con

sidering the corresponding Hele-Shaw system. 

VII. CONCLUSION 

A linear stability analysis has been performed to deter

mine the critical Darcy-Rayleigh number for the onset of 
convection in a horizontally partitioned porous layer heated 
from below with opposing horizontal pressure gradients. It 
has been shown that the stationary convection arises at onset 
when the velocity differential satisfies U < 2:859, but 
unsteady convection ensues otherwise. In dimensional terms, 
this means that stationary convection ensures when the seep

age velocity is less than 2:859j=HðqCÞ . Streamline and isof 
therm patterns have also been given, and the detailed 
behaviour of the local minima and the turning point in the 
neutral curve have been presented. 

When there is no background flow, then the critical 
value of the Darcy-Rayleigh number is Rac ¼ 2:74556p2, 
which is less than 4p2, the value for standard Darcy-Bénard 
layer. This appears to suggest that the presence of a parti

tion reduces the critical value of Ra. However, if we had  
nondimensionalised using the full height of the layer and 
the temperature drop, then the corresponding critical value 
would be multiplied by 4 and would be 10:98224p2; all  
quoted wavenumbers would then be double the values 
quoted here. Thus, the presence of the partition increases 
the critical Darcy-Rayleigh number almost three-fold. 

The present configuration bears some resemblance to 
the inclined form of the classical Darcy-Bénard problem, 
which has been studied by many (see, for example, Weber13 

and Caltagirone and Bories14) and, most recently, by Rees 
and Bassom.12 The basic state in those papers consists of 
flow up the lower heated surface and down the upper cooled 
surface. Once the layer has been tilted away from the hori

zontal, stationary modes also coalesce into pairs of travelling 
waves, although these latter never form the most unstable 
state. 

We make the following conclusions for cases, where the 
flow is constrained to be two-dimensional: 

(1) The presence of the horizontal flow alters the morphol

ogy of the neutral curves from that which occurs when 
there is no flow. 

(2) The value of the critical Darcy-Rayleigh number for sta

tionary mode convection increases as the velocity differ

ential, U, increases. 
(3) The travelling mode branch of solutions bifurcates from 

a turning point formed by the merging of two stationary 
mode branches. 

(4) The turning point recedes to infinity as	 jUj ! 0 and is 
asymptotically proportional to k�2 in that limit. 

(5) Travelling modes are characterised by having convection 
concentrated primarily in only one of the sublayers. 

(6) Travelling modes form the preferred mode of convection 
when U > 2:895. 

When the fluid occupies a layer of infinite extent in both 
horizontal directions, and the background fluid velocities are 
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no longer parallel to one another, then the critical Darcy-

Rayleigh corresponds to that roll orientation for which the 
perpendicular components of the background flows are iden

tical and of the same sign. In such instances, the U ¼ 0 result 
applies. 

Finally, we need to make two comments on the realiz

ability of the solutions we have found. First, we note that the 
configuration we have studied is structurally unstable in the 
sense that almost all slight perturbations to the system result 
in qualitative changes to the neutral curves. Examples of this 
include (i) a non-centrally located partition and (ii) slight 
changes in the permeability or diffusivity of one of the 
layers. In all of these cases, mode 1 would not retain its sym

metry about the centre of the layer and the formerly station

ary patterns would move. Likewise, our computed travelling 
wave solutions would now have unequal velocities in oppo

site directions and slightly different critical Darcy-Rayleigh 
numbers. Moreover, the morphology of the turning points 
would be altered. 

Second, the configuration we have studied is of infi

nite horizontal extent, whereas any possible practical ex

perimental work would involve finite layers. This would 
mean that the entrance effects would need to be taken 
into account in the analysis. Typically, disturbance quan

tities might be set to zero at inflow and, therefore, each 
of the sublayers would have a development region near 
the inflow boundary within which any upstream propaga

tion of disturbances would die out. The papers by Dufour 
and Néel15,16 consider this very situation for a single 
Darcy-Bénard layer. They show that the upstream propa

gation of disturbances is sufficiently strong that the entry 
region corresponds typically to only a few wavelengths 
of the convecting pattern. The length of the entry region 
increases with the strength of the background flow, but 
decreases as the Darcy-Rayleigh number increases. 
Therefore, we can conclude that our analysis could be 
modelled in the laboratory even if the length of the layer 
is not too large. 
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APPENDIX A: COMPLEX DISPERSION RELATION 

If we set the exponential growth rate, k, to be equal to 
ic, then the following is the dispersion relation for stationary 
convection when the velocity differential, U, is nonzero. 

A2k2 coth k2 �A1k1 coth k1 A4k4 coth k4 �A3k3 coth k3 

A2 �A1 
þ 

A4 �A3 
¼ 0; 

(A1) 

where 
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A1 ¼ 
k2

1 � k2 þ iðc � ku
ð
1 
bÞÞ
;

k 

A2 ¼ 
k2

2 � k2 þ iðc � ku1
ðbÞÞ

;
k 

A3 ¼ 
k2

3 � k2 þ iðc � ku
ðbÞÞ

;2 

k 

A4 ¼ 
k2

4 � k2 þ iðc � ku
ðbÞÞ

;2 

k 
and where 

qffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffi 
4Rk2 

k2
1 ¼ k2 þ

ðuð1 
bÞ

k � cÞi þ � ðc � ku
ð
1 
bÞÞ 

2 

;
2 qffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffi 

4Rk2 

k2
2 ¼ k2 þ

ðuð1 
bÞ

k � cÞi � � ðc � ku
ð
1 
bÞÞ 

2 

;
2 qffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffi 

4Rk2 

k2
3 ¼ k2 þ

ðuð2 
bÞ

k � cÞi þ � ðc � ku2
ðbÞÞ 

2 

;
2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

k2
4 ¼ k2 þ

ðuð2 
bÞ

k � cÞi � 4Rk2 � ðc � ku2
ðbÞÞ 

2 

: 
2 

When u
ð
1 
bÞ ¼ �u

ð
2 
bÞ

, which is the case we have considered, 
and when we are concerned solely with stationary modes, 
then we set c ¼ 0. In such cases, A2 � A1 ¼ A4 � A1, and the 
complex dispersion relation reduces to, 

A2k2 coth k2 �A1k1 coth k1 þA4k4 cothk4 �A3k3 coth k3 ¼ 0: 

(A2) 

This expression reduces still further to that given by Eq. (16) 
when uðbÞ ¼ u

ðbÞ ¼ 0.1 2 

APPENDIX B: TURNING POINT ANALYSIS FOR jU j�1 

The aim of this Appendix is to summarise briefly the 
analysis of the location of the turning point in the stationary 
part of the neutral curve as U ! 0. A detailed inspection of 
the numerically obtained values suggests that the appropriate 
balance of magnitudes is U / k�2. The turning point must 
be located between the neutral stability curves for modes 1 
and 2 for the stationary case, U ¼ 0. Therefore, the analysis 
begins by setting, 

Ra ¼ k2 þ 2p 2 þ ak�1 þ � � � ; U ¼ xk�2: (B1) 

The auxiliary quantites given in Appendix A become, 

p2 � 
a xi 

� 
1 

A1 ¼ k þ
k 
þ 

2 
�

4 k2 
þ � � � ; 

p2 � 
a xi 

� 
1 

A2 ¼ �k �
k 
þ 

2 
�

4 k2 
þ � � � ; 

p2 � 
a xi 

� 
1 

A3 ¼ k þ
k 
þ 

2 
þ

4 k2 
þ � � � ; 

p2 � 
a xi 

� 
1 

A4 ¼ �k �
k 
þ 

2 
þ

4 k2 
þ � � � ; 
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and 

k1 ¼
p

2 
ffiffiffi 

k þ
4

p
k 

2 

þ 
16 
xi þ

8 
a þ � � � ; ; 

x ai 1 
k2 ¼ pi þ 

8 
þ

4 pk 
þ � � � ; 

k3 ¼
p

2 
ffiffiffi � 

k þ
4

p
k 

2 

þ 
� 
�
16 
xi þ

8 
a 
� 
þ � � � ; 

� 
; 

k4 ¼ pi þ �
8 
x þ a

4 
i 

p
1 
k 
þ � � � : 

After substitution of these expressions into the dispersion rela

tion Eq. (A2), we obtain the following formula at leading 
order: 

ffiffiffi 
2 2 2x ¼ �4½2

p
2 p a þ a 	: (B2) 

It is clear that x2 takes positive values only when 
ffiffiffi 

2� 2
p

2 p 
 a 
 0; (B3) 

which corresponds exactly to the region between the neutral 
curves for modes 1 and 2, which are given by the Oðk�1Þ
terms in Eq. (19). Both extremes of this interval correspond 
to x ! 0, so that we recover one or the other of the first two 
modes for U ¼ 0. The largest value of x arises when ffiffiffi 

2
p

2 p , for which the turning point corresponds to ffiffiffi a ¼ �p
2x ¼ 2 p2. In terms of the original unscaled variables, the 

turning point arises at, 
ffiffiffi ffiffiffi 

2 2RaTP � k2 þ 2p �
p

2p2k�1; kTP � 2
p

2p =U; (B4) 

when U � 1. 
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