15,276 research outputs found
1/N_c Expansion of the Heavy Baryon Isgur-Wise Functions
The 1/N_c expansion of the heavy baryon Isgur-Wise functions is discussed.
Because of the contracted SU(2N_f) light quark spin-flavor symmetry, the
universality relations among the Isgur-Wise functions of \Lambda_b to \Lambda_c
and \Sigma_b^{(*)} to \Sigma_c^{(*)} are valid up to the order of 1/N_c^2.Comment: 7 pages, latex, no figures, to appear in Phys. Rev.
Renormalization of the baryon axial vector current in large-N_c chiral perturbation theory
The baryon axial vector current is computed at one-loop order in heavy baryon
chiral perturbation theory in the large-N_c limit, where N_c is the number of
colors. Loop graphs with octet and decuplet intermediate states cancel to
various orders in N_c as a consequence of the large-N_c spin-flavor symmetry of
QCD baryons. These cancellations are explicitly shown for the general case of
N_f flavors of light quarks. In particular, a new generic cancellation is
identified in the renormalization of the baryon axial vector current at
one-loop order. A comparison with conventional heavy baryon chiral perturbation
theory is performed at the physical values N_c=3, N_f=3.Comment: REVTex4, 29 pages, 2 figures, 6 tables. Equations (32) and (81)
corrected. Some typos fixed. Results and conclusions remain unchange
Coupling single molecule magnets to quantum circuits
In this work we study theoretically the coupling of single molecule magnets
(SMMs) to a variety of quantum circuits, including microwave resonators with
and without constrictions and flux qubits. The main results of this study is
that it is possible to achieve strong and ultrastrong coupling regimes between
SMM crystals and the superconducting circuit, with strong hints that such a
coupling could also be reached for individual molecules close to constrictions.
Building on the resulting coupling strengths and the typical coherence times of
these molecules (of the order of microseconds), we conclude that SMMs can be
used for coherent storage and manipulation of quantum information, either in
the context of quantum computing or in quantum simulations. Throughout the work
we also discuss in detail the family of molecules that are most suitable for
such operations, based not only on the coupling strength, but also on the
typical energy gaps and the simplicity with which they can be tuned and
oriented. Finally, we also discuss practical advantages of SMMs, such as the
possibility to fabricate the SMMs ensembles on the chip through the deposition
of small droplets.Comment: 23 pages, 12 figure
Perceived Community Cohesion and the Stress Process in Youth
Using survey data from two youth samples, one rural and one urban, we examine the role and significance of perceived community cohesion in the stress process. In particular, we assess the extent to which community attachment and detachment are related to depressed mood, problem substance use, and delinquency net of social statuses, stress exposure, and personal attributes. In addition, we explore the degree to which those dimensions of community cohesion explain or condition the links between the above stress-process components (e.g., social statuses, stress exposure, and personal attributes) and well-being. We find remarkably similar results across samples: community attachment is related to lower odds of problem substance use and delinquency; community detachment is related to higher levels of depressed mood, problem substance use, and delinquency; and community attachment buffers the link between stress and problem substance use. With respect to depressed mood, however, the rural youth show greater vulnerability to stress than the urban youth and unique benefits from community attachment compared to the latter. Our findings highlight the roles of community attachment and detachment in the stress process and underscore the importance of each for youth well-being in rural and urban settings
On the structure of large N cancellations in baryon chiral perturbation theory
We show how to compute loop graphs in heavy baryon chiral perturbation theory
including the full functional dependence on the ratio of the Delta--nucleon
mass difference to the pion mass, while at the same time automatically
incorporating the 1/N cancellations that follow from the large-N spin-flavor
symmetry of baryons in QCD. The one-loop renormalization of the baryon axial
vector current is studied to demonstrate the procedure. A new cancellation is
identified in the one-loop contribution to the baryon axial vector current. We
show that loop corrections to the axial vector currents are exceptionally
sensitive to deviations of the ratios of baryon-pion axial couplings from SU(6)
values
Study of perturbed periodic systems of differential equations - The Stroboscopic method
Stroboscopic method for solving perturbed periodic systems of differential equation
Velocity correlations in granular materials
A system of inelastic hard disks in a thin pipe capped by hot walls is
studied with the aim of investigating velocity correlations between particles.
Two effects lead to such correlations: inelastic collisions help to build
localized correlations, while momentum conservation and diffusion produce long
ranged correlations. In the quasi-elastic limit, the velocity correlation is
weak, but it is still important since it is of the same order as the deviation
from uniformity. For system with stronger inelasticity, the pipe contains a
clump of particles in highly correlated motion. A theory with empirical
parameters is developed. This theory is composed of equations similar to the
usual hydrodynamic laws of conservation of particles, energy, and momentum.
Numerical results show that the theory describes the dynamics satisfactorily in
the quasi-elastic limit, however only qualitatively for stronger inelasticity.Comment: 12 pages (REVTeX), 15 figures (Postscript). submitted to Phys. Rev.
Electromagnetic Moments of the Baryon Decuplet
We compute the leading contributions to the magnetic dipole and electric
quadrupole moments of the baryon decuplet in chiral perturbation theory. The
measured value for the magnetic moment of the is used to determine
the local counterterm for the magnetic moments. We compare the chiral
perturbation theory predictions for the magnetic moments of the decuplet with
those of the baryon octet and find reasonable agreement with the predictions of
the large-- limit of QCD. The leading contribution to the quadrupole
moment of the and other members of the decuplet comes from one--loop
graphs. The pionic contribution is shown to be proportional to (and so
will not contribute to the quadrupole moment of nuclei), while the
contribution from kaons has both isovector and isoscalar components. The chiral
logarithmic enhancement of both pion and kaon loops has a coefficient that
vanishes in the limit. The third allowed moment, the magnetic octupole,
is shown to be dominated by a local counterterm with corrections arising at two
loops. We briefly mention the strange counterparts of these moments.Comment: Uses harvmac.tex, 15 pages with 3 PostScript figures packed using
uufiles. UCSD/PTH 93-22, QUSTH-93-05, Duke-TH-93-5
- âŠ