732 research outputs found

    Curb ramp and accessibility element upgrade prioritization: A literature review and analysis of multi-state survey data

    Get PDF
    Curb ramps are a universally beneficial element of the built environment, providing improved access for all users. The Americans with Disabilities Act (ADA) requires compliant ramps to be installed with new construction or when a facility is altered. The large quantity of ramps and other facilities that must be upgraded to achieve full compliance, coupled with limited budgets, often requires states to prioritize ramps for retrofit over time. Users with varying disabilities might prioritize curb ramp improvements differently. This study assessed the state of the practice for prioritizing curb ramp upgrades and retrofits. A background review of national standards and guidance related to curb ramps was conducted. Prioritization processes for similar accessibility elements, including sidewalks and accessible pedestrian signals, were gathered through a literature review. State representatives were contacted through an email survey to identify existing prioritization processes for curb ramps. Americans with Disabilities Act Accessibility Guidelines and Proposed Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way provide similar standards and guidelines for accessibility. Three studies found that pedestrians with vision disabilities found domed surfaces most detectable, although users with mobility disabilities experienced negative safety and negotiability impacts with detectable warning surfaces. Compliance with accessibility standards and citizen requests were most commonly used for prioritization at the state level; localities were more likely to consider proximity to pedestrian generators and transit. These findings provide a foundational resource for agencies developing or revising prioritization processes for curb ramp retrofits.Peer Reviewe

    What Matters Most in Transportation Demand Model Specifications: A Comparison of Outputs in a Mid-size Network

    Get PDF
    This paper examines the impact of travel demand modeling (TDM) disaggregation techniques in the context of medium-sized communities. Specific TDM improvement strategies are evaluated for predictive power and flexibility with case studies based on the Tyler, Texas, network. Results suggest that adding time-of-day disaggregation, particularly in conjunction with multi-class assignment, to a basic TDM framework has the most significant impacts on outputs. Other strategies shown to impact outputs include adding a logit mode choice model and incorporating a congestion feedback loop. For resource-constrained communities, these results show how model output and flexibility vary for different settings and scenarios.BACKGROUND Transportation directly provides for the mobility of people and goods, while influencing land use patterns and economic activity, which in turn affect air quality, social equity, and investment decisions. Driven by the need to forecast future transportation demand and system performance, Manheim (1979) and Florian et al. (1988) introduced a transportation analysis framework for traffic forecasting using aggregated data that provide the basis for what is known as the four-step model: a process involving trip generation, then trip distribution and mode choice, followed by route choice. Aggregating demographic data at the zone level, the four-step model generates trip productions based on socioeconomic data (e.g., household counts by income and size) and trip attractions primarily based on jobs counts. The model then proportionally distributes trips between each origin and destination (OD) zone pair based on competing travel attractions and impedances, under the assumption that OD pairings with higher travel costs draw fewer trips. Trips between each OD pair are split among a variety of transportation modes, allocating trips to private vehicle, transit, or othe

    Rethinking infrastructure design: Evaluating pedestrians and VRUs' psychophysiological and behavioral responses to different roadway designs

    Full text link
    The integration of human-centric approaches has gained more attention recently due to more automated systems being introduced into our built environments (buildings, roads, vehicles, etc.), which requires a correct understanding of how humans perceive such systems and respond to them. This paper introduces an Immersive Virtual Environment-based method to evaluate the infrastructure design with psycho-physiological and behavioral responses from the vulnerable road users, especially for pedestrians. A case study of pedestrian mid-block crossings with three crossing infrastructure designs (painted crosswalk, crosswalk with flashing beacons, and a smartphone app for connected vehicles) are tested. Results from 51 participants indicate there are differences between the subjective and objective measurement. A higher subjective safety rating is reported for the flashing beacon design, while the psychophysiological and behavioral data indicate that the flashing beacon and smartphone app are similar in terms of crossing behaviors, eye tracking measurements, and heart rate. In addition, the smartphone app scenario appears to have a lower stress level as indicated by eye tracking data, although many participants don't have prior experience with it. Suggestions are made for the implementation of new technologies, which can increase public acceptance of new technologies and pedestrian safety in the future

    Dynamic Modeling of Inland Flooding and Storm Surge on Coastal Cities Under Climate Change Scenarios: Transportation Infrastructure Impacts in Norfolk, Virginia USA as a Case Study

    Get PDF
    Low-lying coastal cities across the world are vulnerable to the combined impact of rainfall and storm tide. However, existing approaches lack the ability to model the combined effect of these flood mechanisms, especially under climate change and sea level rise (SLR). Thus, to increase flood resilience of coastal cities, modeling techniques to improve the understanding and prediction of the combined effect of these flood hazards are critical. To address this need, this study presents a modeling system for assessing the combined flood impact on coastal cities under selected future climate scenarios that leverages ocean modeling with land surface modeling capable of resolving urban drainage infrastructure within the city. The modeling approach is demonstrated in quantifying the impact of possible future climate scenarios on transportation infrastructure within Norfolk, Virginia, USA. A series of combined storm events are modeled for current (2020) and projected future (2070) climate scenarios. The results show that pluvial flooding causes a larger interruption to the transportation network compared to tidal flooding under current climate conditions. By 2070, however, tidal flooding will be the dominant flooding mechanism with even nuisance flooding expected to happen daily due to SLR. In 2070, nuisance flooding is expected to cause a 4.6% total link close time (TLC), which is more than two times that of a 50-year storm surge (1.8% TLC) in 2020. The coupled flood model was compared with a widely used but physically simplistic bathtub method to assess the difference resulting from the more complex modeling presented in this study. The results show that the bathtub method overestimated the flooded area near the shoreline by 9.5% and 3.1% for a 10-year storm surge event in 2020 and 2070, respectively, but underestimated the flooded area in the inland region by 9.0% and 4.0% for the same events. The findings demonstrate the benefit of sophisticated modeling methods compared to more simplistic bathtub approaches, in climate adaptive planning and policy in coastal communities

    Complete Genome Sequences of Four Toxigenic ;Clostridium difficile Clinical Isolates from Patients of the Lower Hudson Valley, New York, USA

    Get PDF
    Complete genome sequences of four toxigenic Clostridium difficile isolates from patients in the lower Hudson Valley, New York, USA, were achieved. These isolates represent four common sequence types (ST1, ST2, ST8, and ST42) belonging to two distinct phylogenetic clades. All isolates have a 4.0- to 4.2-Mb circular chromosome, and one carries a phage

    DHODH modulates transcriptional elongation in the neural crest and melanoma

    Get PDF
    Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation

    Registered replication report on Fischer, Castel, Dodd, and Pratt (2003)

    Get PDF
    The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space
    • …
    corecore