50 research outputs found

    A mTurquoise-Based cAMP Sensor for Both FLIM and Ratiometric Read-Out Has Improved Dynamic Range

    Get PDF
    FRET-based sensors for cyclic Adenosine Mono Phosphate (cAMP) have revolutionized the way in which this important intracellular messenger is studied. The currently prevailing sensors consist of the cAMP-binding protein Epac1, sandwiched between suitable donor- and acceptor fluorescent proteins (FPs). Through a conformational change in Epac1, alterations in cellular cAMP levels lead to a change in FRET that is most commonly detected by either Fluorescence Lifetime Imaging (FLIM) or by Sensitized Emission (SE), e.g., by simple ratio-imaging. We recently reported a range of different Epac-based cAMP sensors with high dynamic range and signal-to-noise ratio. We showed that constructs with cyan FP as donor are optimal for readout by SE, whereas other constructs with green FP donors appeared much more suited for FLIM detection. In this study, we present a new cAMP sensor, termed TEpacVV, which employs mTurquoise as donor. Spectrally very similar to CFP, mTurquoise has about doubled quantum efficiency and unlike CFP, its fluorescence decay is strictly single-exponential. We show that TEpacVV appears optimal for detection both by FLIM and SE, that it has outstanding FRET span and signal-to-noise ratio, and improved photostability. Hence, TEpacVV should become the cAMP sensor of choice for new experiments, both for FLIM and ratiometric detection

    BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.</p> <p>Results</p> <p>In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.</p> <p>Conclusion</p> <p>BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. The BLProt software is available at <url>http://www.inb.uni-luebeck.de/tools-demos/bioluminescent%20protein/BLProt</url></p

    Cyclic AMP Control Measured in Two Compartments in HEK293 Cells: Phosphodiesterase KM Is More Important than Phosphodiesterase Localization

    Get PDF
    The intracellular second messenger cyclic AMP (cAMP) is degraded by phosphodiesterases (PDE). The knowledge of individual families and subtypes of PDEs is considerable, but how the different PDEs collaborate in the cell to control a cAMP signal is still not fully understood. In order to investigate compartmentalized cAMP signaling, we have generated a membrane-targeted variant of the cAMP Bioluminiscence Resonance Energy Transfer (BRET) sensor CAMYEL and have compared intracellular cAMP measurements with it to measurements with the cytosolic BRET sensor CAMYEL in HEK293 cells. With these sensors we observed a slightly higher cAMP response to adenylyl cyclase activation at the plasma membrane compared to the cytosol, which is in accordance with earlier results from Fluorescence Resonance Energy Transfer (FRET) sensors. We have analyzed PDE activity in fractionated lysates from HEK293 cells using selective PDE inhibitors and have identified PDE3 and PDE10A as the major membrane-bound PDEs and PDE4 as the major cytosolic PDE. Inhibition of membrane-bound or cytosolic PDEs can potentiate the cAMP response to adenylyl cyclase activation, but we see no significant difference between the potentiation of the cAMP response at the plasma membrane and in cytosol when membrane-bound and cytosolic PDEs are inhibited. When different levels of stimulation were tested, we found that PDEs 3 and 10 are mainly responsible for cAMP degradation at low intracellular cAMP concentrations, whereas PDE4 is more important for control of cAMP at higher concentrations

    Quantitative real-time imaging of intracellular FRET biosensor dynamics using rapid multi-beam confocal FLIM

    Get PDF
    Fluorescence lifetime imaging (FLIM) is a quantitative, intensity-independent microscopical method for measurement of diverse biochemical and physical properties in cell biology. It is a highly effective method for measurements of Förster resonance energy transfer (FRET), and for quantification of protein-protein interactions in cells. Time-domain FLIM-FRET measurements of these dynamic interactions are particularly challenging, since the technique requires excellent photon statistics to derive experimental parameters from the complex decay kinetics often observed from fluorophores in living cells. Here we present a new time-domain multi-confocal FLIM instrument with an array of 64 visible beamlets to achieve parallelised excitation and detection with average excitation powers of ~ 1–2 μW per beamlet. We exemplify this instrument with up to 0.5 frames per second time-lapse FLIM measurements of cAMP levels using an Epac-based fluorescent biosensor in live HeLa cells with nanometer spatial and picosecond temporal resolution. We demonstrate the use of time-dependent phasor plots to determine parameterisation for multi-exponential decay fitting to monitor the fractional contribution of the activated conformation of the biosensor. Our parallelised confocal approach avoids having to compromise on speed, noise, accuracy in lifetime measurements and provides powerful means to quantify biochemical dynamics in living cells

    Persistent cAMP-Signals Triggered by Internalized G-Protein–Coupled Receptors

    Get PDF
    Real-time monitoring of G-protein-coupled receptor (GPCR) signaling in native cells suggests that the receptor for thyroid stimulating hormone remains active after internalization, challenging the current model for GPCR signaling
    corecore