23,282 research outputs found

    A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEA reconfigurable wideband and multiband C-Slot patch antenna with dual-patch elements is proposed and studied. It occupies a compact volume of 50 × 50 × 1.57 (3925 mm3), including the ground plane. The antenna can operate in two dual-band modes and a wideband mode from 5 to 7 GHz. Two parallel C-Slots on the patch elements are employed to perturb the surface current paths for excitation of the dual-band and the wideband modes. Two switches, implemented using PIN diodes, are placed on the connecting lines of a simple feed network to the patch elements. Dual-band modes are achieved by switching “ON” either one of the two patch elements, while the wideband mode with an impedance bandwidth of 33.52% is obtained by switching “ON” both patch elements. The frequencies in the dual-band modes can be independently controlled using positions and dimensions of the C-Slots without affecting the wideband mode. The advantage of the proposed antenna is that two dual-band operations and one wideband operation can be achieved using the same dimensions. This overcomes the need for increasing the surface area normally incurred when designing wideband patch antennas. Simulation results are validated experimentally through prototypes. The measured radiation patterns and peak gains show stable responses and are in good agreements. Coupling between the two patch elements plays a major role for achieving the wide bandwidth and the effects of mutual coupling between the patch elements are also studied

    Finding the Leptonic WWWW Decay Mode of a Heavy Higgs Boson

    Full text link
    We reanalyze the extraction of the heavy Higgs boson signal HW+Wˉν,νˉH\rightarrow W^+W^-\rightarrow \bar\ell\nu,\ell\bar\nu (=e or μ)(\ell=e\hbox{ or }\mu) from the Standard Model background at hadron supercolliders, taking into account revised estimates of the top quark background. With new acceptance criteria the detection of the signal remains viable. Requiring a forward jet-tag, a central jet-veto, and a large relative transverse momentum of the two charged leptons yields S/B>6S/\sqrt B>6 for one year of running at the SSC or LHC.Comment: LaTex(Revtex), 9 pages, 6 figures (available upon request), MAD/PH/75

    Large Photonic Band Gaps in Certain Periodic and Quasi-Periodic Networks in two and three dimensions

    Full text link
    The photonic band structures in certain two- and three-dimensional periodic networks made of one-dimensional waveguides are studied by using the Floquet-Bloch theorem. We find that photonic band gaps exist only in those structures where the fundamental loop exhibits anti-resonant transmission. This is also true for quasi-periodic networks in two and three dimensions, where the photonic band structures are calculated from the spectra of total transmission arising from a source inside the samples. In all the cases we have studied, it is also found that the gap positions in a network are dictated by the frequencies at which the anti-resonance occurs.Comment: 7 pages, 10 figures and 1 table. Published in Phys. Rev. B, 70, 125104 (2004

    Fermi Large Area Telescope Detection of Two Very-High-Energy (E>100 GeV) Gamma-ray Photons from the z = 1.1 Blazar PKS 0426-380

    Full text link
    We report the Fermi Large Area Telescope (LAT) detection of two very-high-energy (VHE, E>100 GeV) gamma-ray photons from the directional vicinity of the distant (redshift, z = 1.1) blazar PKS 0426-380. The null hypothesis that both the 134 and 122 GeV photons originate from unrelated sources can be rejected at the 5.5 sigma confidence level. We therefore claim that at least one of the two VHE photons is securely associated with the blazar, making PKS 0426-380 the most distant VHE emitter known to date. The results are in agreement with the most recent Fermi-LAT constraints on the Extragalactic Background Light (EBL) intensity, which imply a z1z \simeq 1 horizon for \simeq 100 GeV photons. The LAT detection of the two VHE gamma-rays coincided roughly with flaring states of the source, although we did not find an exact correspondence between the VHE photon arrival times and the flux maxima at lower gamma-ray energies. Modeling the gamma-ray continuum of PKS 0426-380 with daily bins revealed a significant spectral hardening around the time of detection of the first VHE event (LAT photon index \Gamma\ \simeq 1.4) but on the other hand no pronounced spectral changes near the detection time of the second one. This combination implies a rather complex variability pattern of the source in gamma rays during the flaring epochs. An additional flat component is possibly present above several tens of GeV in the EBL-corrected Fermi-LAT spectrum accumulated over the ~8-month high state.Comment: 5 pages, 1 table, 4 figures. Accepted by ApJ

    A simple and effective method for directing the sagittal placement of thoracic pedicle screws without intraoperative imaging

    Get PDF
    Concurrent Session 5A: Adolescent Idiopathic Scoliosis & Complications. Paper no. 94postprintThe 17th International Meeting on Advanced Spine Techniques (IMAST 2010), Toronto, Canada, 21-24 July 2010

    Effects of colour and emotion in illustration

    Get PDF

    On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C +67.13

    Full text link
    Here we analyze radio, optical, and X-ray data for a peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy, CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation \sim10 kpc, the brighter of which hosts the radio source 4C +67.13. The Fanaroff-Riley type-II radio morphology of 4C +67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio 104\sim10^{-4} (for the estimated black hole masses of 3×108M\sim 3 \times 10^8\,M_\odot and 109M\sim 10^9 \, M_\odot). The gathered X-ray ({\it Chandra}) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (60\sim 60\,kpc projected) between the position of the brightest cluster galaxy and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C\,+67.13 is compressed (by a factor of about 1.4\sim 1.4) and heated (from 2.0\simeq 2.0\,keV up to 2.7\,keV), consistent with the presence of a weak shock (Mach number 1.3\sim 1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of 1045\sim 10^{45}\,erg\,s1^{-1}, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system.Comment: 12 pages, 11 figures, accepted for publication in Ap

    Submillimeter wavelength survey of the galactic plane from l = -5 deg to l = +62 deg: Structure and energetics of the inner disk

    Get PDF
    Results from a large scale survey of the first quadrant of the Milky Way galactic plane at wavelengths of 150, 250, and 300 microns with a 10x10 arcmin beam are presented. The emission detected in the survey arises from compact sources, most of which are identified with known peaks of 5 GHz and/or CO emission, and from an underlying diffuse background with a typical angular width of approximately 0.9 deg (FWHM) which accounts for most of the emission. A total of 80 prominent discrete sources were identified and characterized, of which about half were not previously reported at far infrared wavelengths. The total infrared luminosity within the solar circle is approximately 1 to 2x10 to the 10th power L sub 0, and is probably emitted by dust that resides in molecular clouds

    Statistical Transfer Matrix Study of the ±J\pm J Multileg Ising Ladders and Tubes

    Full text link
    Finite temperature properties of symmetric ±J\pm J multileg Ising ladders and tubes are investigated using the statistical transfer matrix method. The temperature dependences of the specific heat and entropy are calculated. In the case of tubes, it is found that the ground state entropy shows an even-odd oscillation with respect to the number of legs. The same type of oscillation is also found in the ground state energy. On the contrary, these oscillations do not take place in ladders. From the temperature-dependence of the specific heat, it is found that the lowest excitation energy is 4J for even-leg ladders while it is 2J otherwise, The physical origin of these behaviors is discussed based on the structure of excitations.Comment: 6 pages, 9 figure
    corecore