12,538 research outputs found

    Adaptive just-in-time code diversification

    Get PDF
    We present a method to regenerate diversified code dynamically in a Java bytecode JIT compiler, and to update the diversification frequently during the execution of the program. This way, we can significantly reduce the time frame in which attackers can let a program leak useful address space information and subsequently use the leaked information in memory exploits. A proof of concept implementation is evaluated, showing that even though code is recompiled frequently, we can achieved smaller overheads than the previous state of the art, which generated diversity only once during the whole execution of a program

    Two-Dimensional Inversion Asymmetric Topological Insulators in Functionalized III-Bi Bilayers

    Full text link
    The search for inversion asymmetric topological insulators (IATIs) persists as an effect for realizing new topological phenomena. However, so for only a few IATIs have been discovered and there is no IATI exhibiting a large band gap exceeding 0.6 eV. Using first-principles calculations, we predict a series of new IATIs in saturated Group III-Bi bilayers. We show that all these IATIs preserve extraordinary large bulk band gaps which are well above room-temperature, allowing for viable applications in room-temperature spintronic devices. More importantly, most of these systems display large bulk band gaps that far exceed 0.6 eV and, part of them even are up to ~1 eV, which are larger than any IATIs ever reported. The nontrivial topological situation in these systems is confirmed by the identified band inversion of the band structures and an explicit demonstration of the topological edge states. Interestingly, the nontrivial band order characteristics are intrinsic to most of these materials and are not subject to spin-orbit coupling. Owning to their asymmetric structures, remarkable Rashba spin splitting is produced in both the valence and conduction bands of these systems. These predictions strongly revive these new systems as excellent candidates for IATI-based novel applications.Comment: 17 pages,5figure

    Quantum Hall Conductivity in a Landau Type Model with a Realistic Geometry

    Full text link
    In this paper, we revisit some quantum mechanical aspects related to the Quantum Hall Effect. We consider a Landau type model, paying a special attention to the experimental and geometrical features of Quantum Hall experiments. The resulting formalism is then used to compute explicitely the Hall conductivity from a Kubo formula.Comment: LaTeX, 1 eps figur

    Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions

    Full text link
    The paper is concerned with the vanishing viscosity limit of the two-dimensional degenerate viscous lake equations when the Navier slip conditions are prescribed on the impermeable boundary of a simply connected bounded regular domain. When the initial vorticity is in the Lebesgue space LqL^q with 2<q≤∞2<q\le\infty, we show the degenerate viscous lake equations possess a unique global solution and the solution converges to a corresponding weak solution of the inviscid lake equations. In the special case when the vorticity is in L∞L^\infty, an explicit convergence rate is obtained

    DC-transport properties of ferromagnetic (Ga,Mn)As semiconductors

    Full text link
    We study the dc transport properties of (Ga,Mn)As diluted magnetic semiconductors with Mn concentration varying from 1.5% to 8%. Both diagonal and Hall components of the conductivity tensor are strongly sensitive to the magnetic state of these semiconductors. Transport data obtained at low temperatures are discussed theoretically within a model of band-hole quasiparticles with a finite spectral width due to elastic scattering from Mn and compensating defects. The theoretical results are in good agreement with measured anomalous Hall effect and anisotropic longitudinal magnetoresistance data. This quantitative understanding of dc magneto-transport effects in (Ga,Mn)As is unparalleled in itinerant ferromagnetic systems.Comment: 3 pages, 3 figure

    More on volume dependence of spectral weight function

    Full text link
    Spectral weight functions are easily obtained from two-point correlation functions and they might be used to distinguish single-particle from multi-particle states in a finite-volume lattice calculation, a problem crucial for many lattice QCD simulations. In previous studies, it is shown that the spectral weight function for a broad resonance shares the typical volume dependence of a two-particle scattering state i.e. proportional to 1/L31/L^3 in a large cubic box of size LL while the narrow resonance case requires further investigation. In this paper, a generalized formula is found for the spectral weight function which incorporates both narrow and broad resonance cases. Within L\"uscher's formalism, it is shown that the volume dependence of the spectral weight function exhibits a single-particle behavior for a extremely narrow resonance and a two-particle behavior for a broad resonance. The corresponding formulas for both A1+A^+_1 and T1−T^-_1 channels are derived. The potential application of these formulas in the extraction of resonance parameters are also discussed

    Gap opening in the zeroth Landau level in gapped graphene: Pseudo-Zeeman splitting in an angular magnetic field

    Full text link
    We present a theoretical study of gap opening in the zeroth Landau level in gapped graphene as a result of pseudo-Zeeman interaction. The applied magnetic field couples with the valley pseudospin degree of freedom of the charge carriers leading to the pseudo-Zeeman interaction. To investigate its role in transport at the Charge Neutrality Point (CNP), we study the integer quantum Hall effect (QHE) in gapped graphene in an angular magnetic field in the presence of pseudo-Zeeman interaction. Analytical expressions are derived for the Hall conductivity using Kubo-Greenwood formula. We also determine the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that pseudo-Zeeman splitting leads to a minimum in the collisional conductivity at high magnetic fields and a zero plateau in the Hall conductivity. Evidence for activated transport at CNP is found from the temperature dependence of the collisional conductivity.Comment: 20 pages, 4 figures, Accepted in J. Phys. Condensed matte

    Weak Field Phase Diagram for an Integer Quantum Hall Liquid

    Full text link
    We study the localization properties in the transition from a two-dimensional electron gas at zero magnetic field into an integer quantum Hall (QH) liquid. By carrying out a direct calculation of the localization length for a finite size sample using a transfer matrix technique, we systematically investigate the field and disorder dependences of the metal-insulator transition in the weak field QH regime. We obtain a different phase diagram from the one conjectured in previous theoretical studies. In particular, we find that: (1) the extended state energy EcE_{c} for each Landau level (LL) is {\it always} linear in magnetic field; (2) for a given Landau level and disorder configuration there exists a critical magnetic field BcB_{c} below which the extended state disappears; (3) the lower LLs are more robust to the metal-insulator transition with smaller BcB_{c}. We attribute the above results to strong LL coupling effect. Experimental implications of our work are discussed.Comment: 4 pages, ReVTeX 3.0, 4 figures (available upon request
    • …
    corecore