1,174 research outputs found

    The bright-end galaxy candidates at z ~ 9 from 79 independent HST fields

    Get PDF
    We present a full data analysis of the pure-parallel Hubble Space Telescope (HST) imaging observations in the Brightest of Reionizing Galaxies Survey (BoRG[z9]) in Cycle 22. The medium-deep exposures with five HST/WFC3IR+UVIS filter bands from 79 independent sightlines (~370 arcmin^2) provide the least biased determination of number density for z>9 bright galaxies against cosmic variance. After a strict two-step selection for candidate galaxies, including dropout color and photometric redshift analyses, and revision of previous BoRG candidates, we identify one source at z~10 and two sources at z~9. The z~10 candidate shows evidence of line-of-sight lens magnification (mu~1.5), yet it appears surprisingly luminous (MUV ~ -22.6\pm0.3 mag), making it one of the brightest candidates at z > 8 known (~ 0.3 mag brighter than the z = 8.68 galaxy EGSY8p7, spectroscopically confirmed by Zitrin and collaborators). For z ~ 9 candidates, we include previous data points at fainter magnitudes and find that the data are well fitted by a Schechter luminosity function with alpha ~ -2.1, MUV ~ -21.5 mag, and log phi ~ -4.5 Mpc^-3mag^-1, for the first time without fixing any parameters. The inferred cosmic star formation rate density is consistent with unaccelerated evolution from lower redshift.Comment: 18pages, 7figures, 6tables. accepted to the Astrophysical Journa

    Discovery of a Multiply Lensed Submillimeter Galaxy in Early HerMES Herschel/SPIRE Data

    Get PDF
    We report the discovery of a bright (f(250 μm)>400 mJy), multiply lensed submillimeter galaxy HERMES J105751.1+573027 in Herschel/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880 μm Submillimeter Array observations resolve at least four images with a large separation of ~9". A high-resolution adaptive optics K_p image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of z = 2.9575, and the lensing model gives a total magnification of μ ~ 11 ± 1. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, 88 ± 3 K. We derive a lensing-corrected total IR luminosity of (1.43 ± 0.09) × 10^(13) L_☉, implying a star formation rate of ~2500 M_☉ yr^(–1). However, models primarily developed from brighter galaxies selected at longer wavelengths are a poor fit to the full optical-to-millimeter SED. A number of other strongly lensed systems have already been discovered in early Herschel data, and many more are expected as additional data are collected

    Optical detection of the Pictor A jet and tidal tail : evidence against an IC/CMB jet

    Get PDF
    Date of Acceptance: 12/06/2015New images of the FR II radio galaxy Pictor A from the Hubble Space Telescope reveal a previously undiscovered tidal tail, as well as a number of jet knots coinciding with a known X-ray and radio jet. The tidal tail is approximately 5″ wide (3 kpc projected), starting 18″ (12 kpc) from the center of Pictor A, and extends more than 90″ (60 kpc). The knots are part of a jet observed to be about 4′ (160 kpc) long, extending to a bright hotspot. These images are the first optical detections of this jet, and by extracting knot flux densities through three filters, we set constraints on emission models. While the radio and optical flux densities are usually explained by synchrotron emission, there are several emission mechanisms that might be used to explain the X-ray flux densities. Our data rule out Doppler-boosted inverse Compton scattering as a source of the high-energy emission. Instead, we find that the observed emission can be well described by synchrotron emission from electrons with a low-energy index (p ∼ 2) that dominates the radio band, while a high-energy index (p ∼ 3) is needed for the X-ray band and the transition occurs in the optical/infrared band. This model is consistent with a continuous electron injection scenario.Peer reviewedFinal Accepted Versio

    HerMES: Candidate High-redshift Galaxies Discovered with Herschel/SPIRE

    Get PDF
    We present a method for selecting z > 4 dusty, star-forming galaxies (DSFGs) using Herschel/Spectral and Photometric Imaging Receiver 250/350/500 μm flux densities to search for red sources. We apply this method to 21 deg^2 of data from the HerMES survey to produce a catalog of 38 high-z candidates. Follow-up of the first five of these sources confirms that this method is efficient at selecting high-z DSFGs, with 4/5 at z = 4.3-6.3 (and the remaining source at z = 3.4), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 μm) and in single-band surveys, shows that our method is much more efficient at selecting high-z DSFGs, in the sense that a much larger fraction are at z > 3. Correcting for the selection completeness and purity, we find that the number of bright (S_(500μm) ≥ 30 mJy), red Herschel sources is 3.3 ± 0.8 deg^(–2). This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-z DSFGs is similar to that at z ~ 2, rest-frame UV based studies may be missing a significant component of the star formation density at z = 4-6, even after correction for extinction

    Updates in Rhea-a manually curated resource of biochemical reactions.

    Get PDF
    Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive and non-redundant resource of expert-curated biochemical reactions described using species from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Rhea has been designed for the functional annotation of enzymes and the description of genome-scale metabolic networks, providing stoichiometrically balanced enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list and additional reactions), transport reactions and spontaneously occurring reactions. Rhea reactions are extensively curated with links to source literature and are mapped to other publicly available enzyme and pathway databases such as Reactome, BioCyc, KEGG and UniPathway, through manual curation and computational methods. Here we describe developments in Rhea since our last report in the 2012 database issue of Nucleic Acids Research. These include significant growth in the number of Rhea reactions and the inclusion of reactions involving complex macromolecules such as proteins, nucleic acids and other polymers that lie outside the scope of ChEBI. Together these developments will significantly increase the utility of Rhea as a tool for the description, analysis and reconciliation of genome-scale metabolic models

    HALF OF THE MOST LUMINOUS QUASARS MAY BE OBSCURED: INVESTIGATING THE NATURE OF WISE-SELECTED HOT DUST-OBSCURED GALAXIES

    Get PDF
    The Wide-field Infrared Survey Explorer mission has unveiled a rare population of high-redshift (z = 1–4.6), dusty, hyper-luminous galaxies, with infrared luminosities L[subscript IR] > 10[superscript 13] L[subscript ⊙], and sometimes exceeding 10[superscript 14] L[subscript ⊙]. Previous work has shown that their dust temperatures and overall far-infrared spectral energy distributions (SEDs) are significantly hotter than expected to be powered by star formation. We present here an analysis of the rest-frame optical through mid-infrared SEDs for a large sample of these so-called "hot, dust-obscured galaxies" (Hot DOGs). We find that the SEDs of Hot DOGs are generally well modeled by the combination of a luminous, yet obscured active galactic nuclei (AGNs) that dominates the rest-frame emission at λ > 1 µm and the bolometric luminosity output, and a less luminous host galaxy that is responsible for the bulk of the rest optical/UV emission. Even though the stellar mass of the host galaxies may be as large as 10[superscript 11]–10[superscript 12] M[subscript ⊙], the AGN emission, with a range of luminosities comparable to those of the most luminous QSOs known, require that either Hot DOGs have black hole masses significantly in excess of the local relations, or that they radiate significantly above the Eddington limit, at a level at least 10 times more efficiently than z ~ 2 QSOs. We show that, while rare, the number density of Hot DOGs is comparable to that of equally luminous but unobscured (i.e., Type 1) QSOs. This may be at odds with the trend suggested at lower luminosities for the fraction of obscured AGNs to decrease with increasing luminosity. That trend may, instead, reverse at higher luminosities. Alternatively, Hot DOGs may not be the torus-obscured counterparts of the known optically selected, largely unobscured, hyper-luminous QSOs, and may represent a new component of the galaxy evolution paradigm. Finally, we discuss the environments of Hot DOGs and statistically show that these objects are in regions as dense as those of known high-redshift proto-clusters

    The Bright-end Galaxy Candidates at z ∼ 9 from 79 Independent HST Fields

    Get PDF
    We present a full data analysis of the pure-parallel Hubble Space Telescope (HST) imaging observations in the Brightest of Reionizing Galaxies Survey (BoRG[z9]) in Cycle 22. The medium-deep exposures with five HST/WFC3IR+UVIS filter bands from 79 independent sightlines (∼370 arcmin2) provide the least biased determination of number density for z 9 bright galaxies against cosmic variance. After a strict two-step selection for candidate galaxies, including dropout color and photometric redshift analyses, and revision of previous BoRG candidates, we identify one source at z ∼ 10 and two sources at z ∼ 9. The z ∼ 10 candidate shows evidence of line-of-sight lens magnification (μ ∼ 1.5), yet it appears surprisingly luminous (MUV ∼ -22.6 ± 0.3 mag), making it one of the brightest candidates at known (∼0.3 mag brighter than the z = 8.68 galaxy EGSY8p7, spectroscopically confirmed by Zitrin and collaborators). For z ∼ 9 candidates, we include previous data points at fainter magnitudes and find that the data are well fitted by a Schechter luminosity function with α = -2.1-0.3+0.3, MUV∗ = -21.0-1.4+0.7 mag, and Mpc-3 mag-1, for the first time without fixing any parameters. The inferred cosmic star formation rate density is consistent with unaccelerated evolution from lower redshift

    Mid-Infrared Properties of Nearby Luminous Infrared Galaxies I: Spitzer IRS Spectra for the GOALS Sample

    Full text link
    The Great Observatories All-Sky LIRG Survey (GOALS) is a multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer spectra covering 5-38um and provide a basic analysis of the mid-IR spectral properties for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra. The GOALS sample of 244 nuclei in 180 luminous and 22 ultraluminous IR galaxies represents a complete subset of the IRAS RBGS and covers a range of merger stages, morphologies and spectral types. The majority (>60%) of GOALS LIRGs have high 6.2um PAH equivalent widths (EQW > 0.4um) and low levels of silicate absorption (s_9.7um >-1.0). There is a general trend among the U/LIRGs for silicate depth and MIR slope to increase with LIR. U/LIRGs in the late stages of a merger also have on average steeper MIR slopes and higher levels of dust obscuration. Together these trends suggest that as gas & dust is funneled towards the center of a coalescing merger, the nuclei become more compact and obscured. The sources that depart from these correlations have very low PAH EQW (EQW < 0.1um) consistent with their MIR emission being dominated by an AGN. The most heavily dust obscured sources are the most compact in their MIR emission, suggesting that the obscuring (cool) dust is associated with the outer regions of the starburst. As the merger progresses a marked decline is seen for the fraction of high EQW (star formation dominated) sources while the fraction of composite sources increases but the fraction of AGN-dominated sources remains low. When compared to the MIR spectra of submillimeter galaxies (SMGs) at z~2, the average GOALS LIRG is more absorbed at 9.7um and has more PAH emission. However, when the AGN contributions to both the local LIRGs and the high-z SMGs are removed, the average local starbursting LIRG closely resembles the starbursting SMGs.Comment: Accepted for publication in ApJ

    The Buried Starburst in the Interacting Galaxy II Zw 096 as Revealed by the Spitzer Space Telescope

    Get PDF
    An analysis of data from the Spitzer Space Telescope, Hubble Space Telescope, Chandra X-ray Observatory, and AKARI Infrared Astronomy Satellite is presented for the z = 0.036 merging galaxy system II Zw 096 (CGCG 448-020). Because II Zw 096 has an infrared luminosity of log(L_(IR)/L_☉) = 11.94, it is classified as a Luminous Infrared Galaxy (LIRG), and was observed as part of the Great Observatories All-sky LIRG Survey (GOALS). The Spitzer data suggest that 80% of the total infrared luminosity comes from an extremely compact, red source not associated with the nuclei of the merging galaxies. The Spitzer mid-infrared spectra indicate no high-ionization lines from a buried active galactic nucleus in this source. The strong detection of the 3.3 μm and 6.2 μm polycyclic aromatic hydrocarbon emission features in the AKARI and Spitzer spectra also implies that the energy source of II Zw 096 is a starburst. Based on Spitzer infrared imaging and AKARI near-infrared spectroscopy, the star formation rate is estimated to be 120 M_☉ yr^(-1) and >45 M_☉ yr^(-1), respectively. Finally, the high-resolution B-, I-, and H-band images show many star clusters in the interacting system. The colors of these clusters suggest at least two populations—one with an age of 1-5 Myr and one with an age of 20-500 Myr, reddened by 0-2 mag of visual extinction. The masses of these clusters span a range between 10^6 and 10^8 M_☉. This starburst source is reminiscent of the extranuclear starburst seen in NGC 4038/9 (the Antennae Galaxies) and Arp 299 but approximately an order of magnitude more luminous than the Antennae. The source is remarkable in that the off-nuclear infrared luminosity dominates the entire system
    corecore