129,768 research outputs found

    Epitaxial silicon grown on CeO2/Si(111) structure by molecular beam epitaxy

    Get PDF
    Using electron beam evaporation, a Si/CeO2/Si(111) structure has been grown in a molecular beam epitaxy machine. In situ low energy electron diffraction, cross sectional transmission electron microscopy, selected area diffraction, and atomic force microscopy have been used to structurally characterize the overlying silicon layer and show it to be single crystalline and epitaxially oriented. Rutherford backscattering and energy dispersive x-ray analysis have been used to confirm the presence of a continuous 23 Å CeO2 layer at the interface. Rutherford backscattering and x-ray photoemission spectroscopy show an additional presence of cerium both at the exposed silicon surface and incorporated in low levels (~ 1%) within the silicon film, suggesting a growth mechanism with cerium riding atop the silicon growth front leaving behind small amounts of cerium incorporated in the growing silicon crystal

    Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    Get PDF
    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory

    Quasi-linear theory via the cumulant expansion approach

    Get PDF
    The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate

    Theoretical and experimental studies of a novel cone-jet sensor

    Get PDF
    Modeling of a novel cone-jet sensor using two-dimensional (2-D) finite element analysis was investigated for dimensional measurement. Theoretical and experimental studies demonstrated that a cone-jet sensor supplied with air can be used to accurately measure displacement, and its work range of 1.5 to 4.2 mm is some ten times greater than a simple back-pressure sensor. It is anticipated that this type of sensor will find wide applications in manufacturing industry due to its wider working range, high precision, and other features

    Two techniques for digital filter design

    Get PDF
    Digital controllers, one using a special-purpose computer and the other using a combination of digital and analog techniques, are designed around /1/ computers that simulate the transfer function and interface with the system, and /2/ analog and digital circuits, converters, amplifiers, constant multipliers, and delay lines that form a digital filter

    The partially averaged field approach to cosmic ray diffusion

    Get PDF
    The kinetic equation for particles interacting with turbulent fluctuations is derived by a new nonlinear technique which successfully corrects the difficulties associated with quasilinear theory. In this new method the effects of the fluctuations are evaluated along particle orbits which themselves include the effects of a statistically averaged subset of the possible configurations of the turbulence. The new method is illustrated by calculating the pitch angle diffusion coefficient D sub Mu Mu for particles interacting with slab model magnetic turbulence, i.e., magnetic fluctuations linearly polarized transverse to a mean magnetic field. Results are compared with those of quasilinear theory and also with those of Monte Carlo calculations. The major effect of the nonlinear treatment in this illustration is the determination of D sub Mu Mu in the vicinity of 90 deg pitch angles where quasilinear theory breaks down. The spatial diffusion coefficient parallel to a mean magnetic field is evaluated using D sub Mu Mu as calculated by this technique. It is argued that the partially averaged field method is not limited to small amplitude fluctuating fields and is hence not a perturbation theory

    A new approach to cosmic ray diffusion theory

    Get PDF
    An approach is presented for deriving a diffusion equation for charged particles in a static, random magnetic field. The approach differs from the usual, quasi-linear one, in that particle orbits in the average field are replaced by particle orbits in a partially averaged field. In this way the fluctuating component of the field significantly modifies the particle orbits in those cases where the orbits in the average field are unrealistic. The method permits the calculation of a finite value for the pitch angle diffusion coefficient for particles with a pitch angle of 90 rather than the divergent or ambiguous results obtained by quasi-linear theories. Results of the approach are compared with results of computer simulations using Monte Carlo techniques
    corecore