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THE PARTIALLY AVERAGED FIELD APPROACH 

TO COSMIC RAY DIFFUSION 

Abstract 

The kinetic equation for particles interacting with turbulent fluctuations is 

derived by a new non-linear technique which successfully corrects the difficulties 

associated with quasi-linear theory. In this new method the effects of the fluc-

tuations are evaluated along particle orbits which themselves include the effects 

of a statIstically averaged subset of the possible configurations of the turbulence. 

The new method is illustrated by calculating the pitch angle diffusion coefficient 

DIJ.IJ. for particles interacting with "slab model" magnetic turbulence, i.e., magnetic 

fluctuations linearly polarized transverse to a mean magnetic field (B). Results 
'V 

are compared with those of quasi-linear theory and also with those of Monte Carlo 

calculations reported in a companion paper. The major effect of the non-linear 

treatment in this illustration is the determination of DulJ. in the vicinity of 90° 

pitch angles where quasi-linear theory breaks down. The spatial diffusion coef-

ficient KII parallel to (~) is evaluated using D'LIl as calculated by our technique. 

It is argued that the partially averaged field method is not limited to small ampli-

tude f1uctuating fields and is hence not a perturbation theory. 
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THE PARTIALLY AVERAGED FIELD APPROACH 

TO COSMIC RAY DIFFUSION 

I. Introduction 

The systematic treatment of the transport of charged particles in disordered 

magnetic fields began about ten years ago.1 • 3 These authors derived a Fokker-

Planck equation for the time evolution of the particle distribution function by a 

method that is commonly referre(i toas the quasi-linear method.4 

A more formal definition of the quasi-linear approach will be given in the next 

section but the basic idea may be quickly sketched. To compute the mean square 

effect of a random force field on a particle one must be able to follow the particle's 

orbit in that field for such a time as is required for the random force to become 

self-incoherent. This is an inherently non-linear problem and in general intract-

able; however, if the random force can be separated into an average part, for which 

orbits can be calculated, and a random part that is small (in some sense) one may 

use the orbit in the average field to compute the effects of the random part in the 

hope that the random part will become self-incoheren~ I)efore it has a chance to 

significantly perturb the orbit. 

There are two approaches one may take in applying these notions. One is to 

assume that the correct equation of evolution is a Fokker-Planck equation and 

proceed to calculate the appropriate coefficients. This approach has been de-

veloped primarily by Jokipii1 , 5 and by Hasselmann and \\ ;bberenz/' The diffi-

culty in such an approach is the proper treatment of non-random forces. 7 The 

second method is to begin with the Vlasov equation and derive a Fokker-Planck 
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equation to describe the evolution of the ensemble averaged distribution function. 

The ensemble is the collection of all possible random fields with the required 

statistical parameters. This ~pproach was employed by Hall and Sturrock,3 

Roe lof, 2 Kulsrud and Pearce, 8 and discus sed in a general analysi s by Kaufman. 9 

Most recent authors have employed this approach and we shall use it in this paper. 

The first questions about the appropriateness of a Fokker-Planck equation for 

describing charged particle transport in random magnetic fields were raised by 

Klimas and Sandri. IO They pointed out that the presence of partic Ie trajectories 

(in the average field) with pitch angles near or at 90° with respect to the average 

field invalidated the "adiabatic hypothesis." Since this hypothesis is necessary 

in order to derive the Fokker-Planck equation from a non-Markovian integro-

differential equation resulting from previous steps in the derivation, these authors 

asserted that the correct transport equation was the more primitive (and more 

complicated) non-Markovian one. 

The present authors then pOinted out II that these same 90° pi tch angle particles 

caused even worse problems. Such particles remain in a region of correlated field 

for an arbitrarily long time and thus their orbit perturbations could become im-

portant before the random force becomes self-incoherent, violating the as sump-

tionsofquasi-linearthcory. Indeed we were able to show that for a particular, 

simple model the terms that are dropped in quasi -linear theory eventually domi-

nate for such particles. 

Although the difficulty with quasi-linear theory is confined to a region of phase 

space that is usually small, this region about 90° pitch angles can be quite im-

portant in considering the bulk transport of the charged particles. Earl12 has 

shown that if the fluctuations in the magnetic field are depleted at high frequencies 
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(power spectrum steeper than k -2) quasi-linear theory predicts no scattering 

through 90° pitch angles and hence a partially coherent propagation of the par-

ticles rather than a diffusive propagation. 

Thatquasi-linear theory is inadequate to describe the behavior of particles 

with pitch angles near 90° is generally accepted and several authors have pro-

posed modifications designed to obviate this problem. Some of the proposals 

have been purely phenomenological,!3 some formal! 4 and some have been mix-

tures of the two. 1 
5 It is the purpose of the present pl.'lper to describe and pre-

sent the results of a new method of calculating the diffusion coefficients of 

charged particles in a random magnetic field. 

This method, which we call the partially averaged field (PAF) theory, has 

been briefly described in a previous report. 16 Its fundamental idea may be 

summarized quite simply: while in quasi-linear theory the effects of the fluc-

tuating field are computed along a particle orbit in the ensemble averaged field, 

in the present approach the orbit that is used is the particle's orbit in a partially 

ensemble averaged field. The partially averaged field is averaged only over a 

subset of the full ensemble, namely the subset of all realizations in which the 

value of the field at a certain fixed point has a fixed value. The results com-

puted using this orbit are then finally averaged over the rest of the ensemble, 

i.e., all possible values of the field at the fixed point. 

The resulting theory is non-linear in that effects of the fluctuating field are 

included in the particle's orbit in a fundamentally non-linear way and has the 

virtue of satisfying, a~ least marginally, the requirements for a useful, approx-

imate theory. 
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These remarks will be made more precise in the next section where we will 

discuss the formalism employed in deriving the kinetic equations and show how 

the partially averaged field theory fits into this formalism. The conditions under 

which phase space diffusion takes place are developed. As an example of the 

application of our formalism we consider in Section III the "slab" model of the 

fluctuating field. 'Where existent, the pitch angle diffusion coefficient is explicitly 

evaluated and compared with the result of quasi-linear theory. The differences 

between the results of quasi-linear theory and partially averaged field theory are 

discussed in terms of the physical processes involved. In Section IV we review 

the relationship between pitch angle diffusion and spatial transport. For the pitch 

angle diffusion coefficients derived via the PAF theory in Section III, we derive 

in this section the corresponding spatial diffUSion coefficients I< \I parallel to the 

mean magnetic field. Since K II depends importantly on the pitch angle diffusion 

coefficient in the vicinity of 90° pitch angles, we develop in this region the approx-

imate scaling (from PAF theory) of the pitch angle diffusion' coeffiCient with both 

the rms level of magnetic field fluctuations and with particle rigidi~y. Finally in 

Section V we argue that PAF theory is unrestricted in its validity by the rms 

value ot the magnetic fluctuations and is - at least marginally - a genuine non-

linear theory. 

II. Derivation of the Kinetic Equation 

Consider a collection of charged particles of rest mass m, charge q, and 

momentum p [, .. (1 + p2/m 2c 2)1/2] which move in response to the electromag-
'J 

netic force F" q (E + v x B/ fmc). In our later cosmic ray considerations the 
"',J '*... """ ,.~ 

electric force is negligible compared to the magnetic; for the time being, however, 
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we proceed with generality. !' has a component which fluctuates randomly in 

space and/or time. For our cosmic ray application of the theory F is thought 
rv 

to be an "externally imposed" force, although the additional constra:nt of Maxwell's 

Equations can be added straightforwardly. 

We describe the particles by their one partic'e distribution function f(r, P. t) 
~" '" 

which, when the particles are interacting only with an externally imposed ,t, obeys 

exactly the Vlasov Equation 

(1) 

We are interested in the coarse-grained behavior of f - it~ evolution on the 

time scale of several coherence times between the particles and the fluctuating 

force. We invoke the usual ergodic hypothesis and assert that this behavior is 

identically the behavior of (f). which is f averaged over an ensemble of F's. 
r~ 

The ensemble of F's is specified by the values of the moments 

( F> 
"" 

- (F> (F) + OFc.F) 

( F F F) - (F) (F) ( F) + ( F) (, F ;) F) + (~F (F) (- F) + (1 F <) F) (F) 

+ (~FcF:)F) 

etc. 

Equation (1) is readily split into an equation for : f) 

(2 +-.£.. 
d t my 

( F> 
'" 

(f) -
. . , 

.(>.F· - ;, f· 
('P 

(:, F 0 f I 
(2) 

5 

,~ 



, 
i 
~ 

(;~j.~ p . :- F == 0 for the electromagnetic force) and one for ;; f .. f - (f) "'.~ t"\., 

( 

r4 P 
- + '" c't my 

• Ij ~ 

'. F ,'( f) -c .-
'" '-'p 

"-

Equations (2) and (3) together contain the full information content of (1). 

\ 

( 

\ 

\ 

(3) 

An equation for (f) alone is obtained if Eq. (3) can be solved for: f in terms 

of its initial value . f(r, p, t ) and (f) and the result substituted on the right side ", ~_ 0 

of Eq. (2). An eXact solution for- f is impossible, for Eq. (3) mixes derivative and 

ensemble average operations in a non-commutable fashion. 

(a) Quasi-linear theory 

The quasi-linear method approximates 8 f by the solution to the equation 

(
. P " ) ~ ., _" • ~ + (F) • - dOL 

't Ill .. ". 'p 

. (f) 
'F'-

'p 
(4) 

,-
" 

which neglects terms in Eq. (3) bi-linear in the fluctuations. T,he corresponding 
equation for (f'.) is 

\ / 

(
. p 
-+-
·t m! 

.: .. + (F) ( f) = --.• 4p 
" 

( f ) (r. p.' ) 
'P ,- ". (5) 

The quaSi-linear proPa;ator Vo (t, t ') propagates the r, p dependence of functions 
r, ,.... 

to which it is applied backw,lrd in time from t to t' along trajectories in the force 

field (F); these trajectories are the characteristic trajectories of Eq. (4). ~. 
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We discard the initial value term from further consideration on the assump-

tion that after a reasonable interval t - to all correlation between (, r and V 0 (t, to) 

H(r, p, to) has died away so that ensemble averaging yields O. If such correla-
... ,J ,.. ... 

tions do in fact persist, we think that it is impossible to describe < f) by the 

simple Markovian description toward which we strive. We assume that a similar 

argument applies when Vo is replaced by the more correct propagator that we 

introduce later. 

It is the spirit of quasi-linear theory that scattering is small over a particle-

fluctuation coherence time. The evolution of < f) in Eq. (5) is predominantly a 

convcdhn of < f) (to) along the characteristic trajectories in < ¥.). The quasi­

linear collision term 

?Ip >r r 
• '0 

\ 

d' U 0 (t, T ) c, F ( r. p, T) 
""" """"'''' / 'p 

< f) (r. p, 7) 
" .... ""'" 

(6) 

represents a small correction. It follows then that thE:! adiabatic approximation 

V 0 (t, T) < f) (r, p, T )::: (f) (r, p, t) can and should be made in every instance that 
'" ........ "' .. ",J 

the quasi-linear theory is valid. 1 M The quasi-linear collision term is thus prop-

erJy written 

=-_. . 'pJ (r) (c.' p. t) (7) 

The brackets i f indicate that Vo now propagates -~ . . j.p only. 

We now examine the cirCUmstances under which quaSi-linear theory is valid, 

i.e. COL is "small." It can be shown18 that quasi-linear theory is valid for most 

regions of the particle phase space provided that· E and .:B are small in the 
"- ~ 

sense ,1'3fined in Ref. 18). The reason is that the correlation (.!: (!_> £, t) UO(t,T) 

~'t (1', P. T» diminishes rapidly with t - T. This decrease occurs in the 

7 
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characteristic time t~L and may result from (1) a short intrinsic correlation 

time, Le., the correlation ('F(r,p,t),\F(r,p,T» at fixed r,p cutsoffrapi(J:v 
"'~ ~., "'" r.... "'J r.,# ~ J ~ 

with increasing t - T, and/or (2) a short intrinsic correlation distanc-e in r through 
~, 

which the quasi-linear characteristic orbi~s move rapidly in time. The condition 

for the validity of quasi-linear theory may be represented concisely as t Ql <" 
(' 

t , where t is the characteristic scattering time for particles in the pres-
scat sent 

ence of the fluctuating force. When t Ql «t , scattering effects can be 
c 5(' H t 

neglected in the computation of the scattering itself; quaSi-linear theory is an 

iterative procedure. 

The quasi-linear collision term Eq. (7) can be further simplified by noting 

that 

~~ d 

V (t. T) - - -'- , 
o "P "p(T) 

,. , ,..~, 

where p( I ) IE U 0 (t, r)p is the propagated mome~tum. Further 
r ~, 

-L (1 ,..iL ,I . - + . --,'p( .) 
r (~ ), ~ 

'peT) "P 'pc T) ,ir 
", r,. ". r. "'" "J 

since a variation in p( I ) at fixed r(~) results in a change in both rand p. The 
,.. "'., ,.. ~ 

quasi-linear collision term is in general thus composed of two components 

SI (rUo(t, T) ~ "~ :\ (f) (r,' p., t) 
CQI. d r ! ) " t F (r, p, . --'""'-

'p ~ J ~. '.., I :'p(T) 'P 
10 r, 

fl ur <:~ Vo (to 7) '! (~: ~, 7) -) 
'f . ( f ) (r, p, t) ,- . 1 . 'J ".., ,- (8) 

"P ZIp ( r) 'r 
r, 10 ,', 
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The first term represents pure momentum diffu:;on. For times t- t » t QL 
o c 

this diffusion is described by the tensor 

There is in addition a mixed e.:~ diffusion, which for large t-t o is described by 

the tensor 

This mixed p, r diffusion disappears when (f) is spatially homogeneous and 

may be small for weak inhomogeneities. It is generally present, however, to the 

same degree as the pure momentum diffusion. 

(0) Partially a\(~raged field theory 

In many models there are, however, pathological though important regions of 

phase space where r::)1. is quite long, so long in fact that·~L :: THo'! and 

both the spirit and the subt.'tance of quasi-linear theory are' iolated. 

We propose here an improved approximation, which includes the essential 

effect of the fluctuations themselves in the lowest order propagator. For reasons 

that will be soon evident, we call our method the partially averaged field approxi-

mation. In this formalism the coherence time r PcA is naturally limited ~ PcA :: ' 
!'H.:.Jl 

and the collision integral is validly calculated for (1) all regions of the particle 

phase space and (2) arbitrary amplitude of the fluctuations. Our method is not a 

weak-coupling approximation. It reduces to quasi-linear theory when <! I. ~< r 
\l' J t 

holds. 

9 
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Our formalism proceeds as follows. We consider the ensemble averaging 

process to occur in two steps. A first partial average, denoted by ( ) ~Cl, is per-

formed over all realizations with the same fixed values of 8 E(r ,t) and c B(r ,t) at 
#"' __ ... "" ..... r .... 

the point r and time t at which Eq. (2) is valid. A second final average, indi-
~ , 

dated by ( )i, is then carried out over the distributions of bE(r,t) and cB(r,t). 
~ ,..... '\.; r ... 

The collision term in Eq. (2) is identically written according to this prescription 

c = _ 2.. 
Clp 

C' F (r. p. t) () f) 
r ... rv ,...., 

(10) 

If ~f(r,p, t) depended only on 6F(r,p, t) it would be the same for every real-
rJ .... ..., .... w I"\J r..-

ization included in the partial ensemble and partial averaging would be trivial. 

However, :: f depends on c!': globally. We therefore write Eq. (3) for the arbi­

trary point r', p', t' and partially average to obtain 
~, rv 

, [, pi ,] ;) i Cl \ 
+~ . \7' + ( F> . ( il f ) + ,F ;, f , 'F . - i'lf) 

:~-

_ :'it' I '" "- ~ , \ 
r_ 

(\p 
, I \ r" , / my ,4p 'p f 

r, 

'; (f) 
(11) 

Note that partially averagerl quantities depend functionally on r', p', and t' which 
"'v "'-, 

are the variables of Eq. (11) and parametrically on rand t which are singled out 
r" 

by the partial averaging procedure. Thus far Eqs. (10) and (11) are exact, for all 

we have done is to break the full ensemble average procedure into two sequential 

steps: p~rmbolically ( ) => < ( )') 'i 

The essence of our method is to approximate in Eq. (11) as follows 

! \ \ 

I ;:, 
6 () 

I \ \ ~ 

<oF . - - /(.F . - d) OF) , . ( C f) , ~12) 
\ r, , / \ r, , '" :Jp' • ('p 'p 

r" I 

10 



This approximation maintains the properties of the exact terms in two essential 

limits. First, when r', t' is much different from r, t partial averaging and total 
'\.. ,"" 

averaging are equivalent and (~!. c/Cl£';' f) I') - (~f . 7J/Hp,' b f) ., 0; however, 

( 0 ~\, ::: 0 also under such circumstances. Second, at ~' a: r,o t' a: t we expect 

(8 F . (J/7Jp' of) '.) ('" (3 F . Cl/7Jp' (0 f) 'i.;) to dominate (0 F . ()(ap' Dr), particularly 
~..I ... "" ! I"'\.- '"'", I "'.,...v 

for those realizations that contribute importantly in Eq. (10); the right side of Eq. 

(12) is, however, identically b F· n/Clp' (Of) Ie) at r' a: r, t' := t. 
t"\. r.." I""v ,.. ..... 

Our approximate equation for (0 f) ,;; (r', p', t'; r, t) is thus 
I f"'v ". "'" 

[
rl p' , ( );~ ] - +~ • v + (F) + (oF) ~D '-

at' my' rJ '"" rJ. 7Jp' 
rv 

7J (0 
(13) 

ap' 

Neglecting the initial value term, whose contribution to C is again assumed to 

damp rapidly with time, we express the solution to Eq. (13) as 

f
t' 

(jf>:o (r', p', t' ;~, t) -= - dT U'i(t',T, t) 
I r... '-"" 

10 

(r',p',T) (14) 
cp' r..J "., 

The operator V" (t', T; t) is the propagator in the partially averaged field. 

Operating on an arbitrary function g(r', p', T) it propagates the r', p' dependence 
r "'"" ,...... ,...~; 

backward in time from t' to r along orbits in the partially averaged force 

( F) + ( . F), • u.. also r''3pends parametrically on t because the partial average 
....... r J 

is carried out at constant ti E(r ,t) and :) B(r ,t). 
"'J"" "'" 1"\.. 

For Eq. (10) we need () f>r, (r'" r, p' "" p, t' ~ t; r,t). Substituting from (13), 
r", ""''''",''' ,.... 

our new collision term becomes 

11 
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<3 =- . ( 0 F) [,) (r, p, T; r. t) 
f'"\"I I' '" '"'v "V Clp 

(15) 

We expect decay of <S~ -qcJ (t, 7; t) (S!::) f;) (!:,,e,T;~, t» in the time t - TK t~A 

(t~A :: tgL ) sufficiently short that all characteristic orbits in the partially aver-

aged force remain at least marginally valid for the entire time interval over 

which the integrand in (15) is non-zero. We hold this expectation irrespective of 

the size of 0 F and shall argue why in Section V. 
~, 

For times t - to» ~A we again write 

PA ~) 
C :-:-

cip 

\ 
'0 (f) (r.p. t-T) \ 

"v d ; 

<3p I r\ 
/ ( 

(16) 

The adiabatic approximation on (f) cannot always be made in CPA. The physi-

cal reason is that when 8 f is substantial, scattering as described by Eq. (16) repre-

sents a significant correction to the convective motion in (~). Our success in de­

riving an equation unrestricted by the size of Sf is thus somewhat mitigated by 

the fact that this equation for (f) is an integro-differential equation. One must 

not conclude, however, that an adiabatic approximation is never possible: each 

model to which the (f) equation is applied must be examined individually to see 

whether an adiabatic ansatz can be made conSistently with the resulting physics. 

Work reported in later sections is illustrative of this point. 

12 
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(c) Gaussian statistics 

It is impossible to proceed further with the partially averaged field method 

in full generality. We always conSider the fluctuating electric and magnetic fields, 

(; E(r ,t) and (; B(r ,t), to be Gaussian processes. It can be shown (Appendix A) for 
,,~- "'-.1-

a Gaussian process that 

(SE)ru (r', t'; r, t):: bEer, t)· CE(r', t', r. t) 
"'\.. ,..... '" I""ov '" ~ ""v "-' 

(17a) 

( 0 B ) re. (r', t'; r. t) = (; B ( r. t) • C B (r', t', r, t) 
'\,. I ""v ".J """, "V ~ "'-.J f"'v 

(17b) 

where CE and £B are the normalized correlation tensors for the fluctuating 
~ "-' 

electric and magnetic fields respectively. 

The assumption of a Gaussian process is a common one, partly because the 

central limit theorem 19 states that a tendency towards Gaussian statistics is a 

common occurrence in random systems, but mostly because of its mathematical 

tractability which most other types of statistics do not share. Mathematically, 

Eqs. (17) follow uniquely - and DE and riB are Gaussian processes - provided 
,"" ,,-, 

that one demands that (S E) f) (r', t'; r, t) and (~l B) 'cJ (r' ,t'; r,t) be linearly de-
..... ..., I,..., ..... -.J "'" I f"\, ... "" 

pendent respectively on cE(r,t) and c B(r,t). 
,..~, '"V f"", rv 

III. The Magnetic Slab Model 

We have worked out the details of the partially averaged field formalism for 

the so-called magnetic slab model, and we shall discuss details in this section. 

The magnetic slab model was chosen because its Simplicity facilitates calculation 

and direct comparison with Monte Carlo results (which are reported in the ac-

companying paper 20) and because it also contains some of the baSic physics of 

the scattering of cosmic rays from irregularities in the interplanetary medium. 

13 
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Tn the magnetic slab model there are no electric fields. The ensemble aver-

age magn~tic field (B) is spatially homogeneous and oriented along the z-axis of 
~~ 

a Cartesian coordinate system; magnetic fluctuations are linearly polarized, con-

stant in time, and vary in magnitude only with distance along (!3,). Thus 

(:) B" ~;B (z)e . In this simplest form, there is no spatial variation in planar slabs ,,_ x 

oriented perpendicular to the z-axis and hence the coinage "slab model." At the 

end of this section we discuss a more generalized slab model in which ~\ ~ is in 

the e: direction but planes of constant : (,!3 i are 1 to the y-z plane and at a fixed 

angle (typically 30°) with respect tv the z-axis. 

The magnetic slab model is intended as a description of the interaction of 

cosmic rays with slow magnetic structures (tangential discontinuities or Alfven 

waves) in the solar wind. Let us assume that the radial divergence of the solar 

wind flow can be neglected and that we can place ourselves therefore in a unique 

solar wind frame of reference. The amplitude of the electric fields associated 

with these slow structures is at most i ~:, = v A :!3 i /c and hence far smaller than 

the magnitude of the magnetic fields (VA is the Alfven speed and is typically 50-

100 km/sec). The magnetic force on relativistic cosmic rays is therefore far 

larger than the electric force, and for that reason we neglect the latter. 

Our assumption that < ~) is completely uniform breaks down, of course, on 

the 1 AU spatial scale of the classical Archimedes spiral. However, the pertinent 

scale for a description of scattering is the autocorrelation distance of magnetic 

fluctuations, which has been measured to be a few hundredths of an AU; 21 to the 

extent that (B) is uniform ever this length our model is a good one. There is 
"-

also evidence 22 that the magnetic fluctuations are preferentially polarized in the 

direction normal to the ecliptic plane (the normal direction would thus correspond 
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to our x-direction); any component of ;;B in the ecliptic plane and normal to (B) 
~ ~ 

at its point of generation gradually develops a compressional component 23 as it 

propagates outward in the solar wind and tends to damp away.24 

Since electric fields are negligible, cosmic rays suffer no energy changes in 

their interactions with the fluctuations and I p I is simply a parameter in the equa-

tion for (f). Scattering in angle does occur and can be described in terms of the 

variables f-L w:. p . 'C z I I P I and ,p = tan - 1 P Jp y' /1 is the cosine of the cosmic ray's 
,,_ J 

pitch angle relative to (B) and i is the gyrophase angle measured from {~B (the 
~ ~ 

x-aXiS). 

We consider here the situation where (f) is spatially homogeneous. Such a 

situation arises when (f) is homogeneous at t'"' to and the spectrum of the fluc­

tuations is itself spatially homogeneous. This assumption of spatial homogeneity 

is artificial and unrealistic: as a result of it the bulk spatial transport of cosmic 

rays along and across field lines is precluded. It is made solely to achieve a 

simple model in which to explore and justify the partially averaged field method. 

The spatially inhomogeneous situation will be discussed in Section IV. 

With the aforementioned approximations the equation for (f) is 

\ (f) , (f) I r D (/<, 
, 

<17 U (t,t-r)o, - ( , ) t",) ( "j'I_' 

\ t ,-1, : 
\ , 

\ 

D( ,-, f.) ( f) (r, p, t - r) \ 
~- ~J I (18) 

In Eq. (18), ( ,) '"' q (B> I, mc is the gyrofrequency in the ensemble average mag-

netic field (B)e , 0'"' i~ the gyrofrequency q !:-B'/ymc that would prevail if 
z ~ 

!. ~! ex were the only magnetic field, and D is the differential operator 
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D - (1 )1/2' I d f1. COS el' .;:' - -f1. sIn ()-, - ""':""---'-
Hf1. (1_f12)1/2~lt 

(19) 

We next approximate further by neglecting the gyrophase dependence of (f). 

This is accomplished formally by first expanding (f) in the Fourier series 

+m 

(f) = [ (f} n Cxp in ,p. 
n~-oo 

next substituting into Eq. (IB} and projecting out the n = 0 component 

;'< - Ii S1I1 + - - --____ _ [( 1 2 \ 1/2 .' . f d I~ cos;, ,; ] 
, all (1 _1,2)1/2 ": 

\ 
( f ) C x p i 111 ') " 

n / .' 
(20) 

/ 

and finally neglecting the n" 0 terms on the right hand side of Eq. (21). Fourier 

amplitudes (f} n' n > O. are small compared to (f) 0 in the approximate ratio 

T)2"" (;, B 2 ) / ( B} 2 (cf. Appendix B) provided that they are initially small; the 

physical reason being that the convective term (v}:1 ( f } /;4 t, keeps particles well 

stirred in /. Thus 
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To the right de of Eq. (23) must be added any effects such as sinks and 

sources of particles which are not included in the original Vlasov description 

Eq. (1). 

In the steady state ( f) 0 no longer depends explicitly on time and (23) can 

therefore be written in the more transparent form 

Here 

d (f) 0 
(\7 -_-..:<. 

(iT 

(21) 

(22) 

(23) 

(24) 

is the change in (f) 0 apparent to an observer moving from the point p. at t • 0 

along an orbit in the partially averaged field (c, B), . ,...., 

To the extent that (f) 0 (;1) is a linear function of }1 - and we have found from 

our Monte Carlo calculations that such is approximately the case for a wide variety 

of conditions -
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and Eq. (24) is of diffusion form 

The diffusion coefficient D~: has exactly the same form as the quasi-linear 

diffusion coefficient D~ but differs in that 6/1 is the change in IA evaluated fol­

lowing an orbit inthe partially averaged field rather than following a helical orbit 

in (B) as quasi-linear theory prescribes. For a /" = 0 particle in the slab model 
rv 

A/i approaches no finite limit as 7 -- ex; in quasi-linear theory25 because such a 

particle suffers exactly canceling deflections over its circular orbit at constant 

z in (B); no such pathological behavior occurs in the partially averaged field 
~. 

method because even 1'" 0 particles move freely in z and hence enter regions 

of uncorrelated S B. 
'" 

(a) Results for the Perpendicular Slab Model 

In order to evaluate (/\/i ). and hence the diffusion coefficient 

1 (26) 
2 ~· " 

Newton's Equations of motion 

dp' [ - = p' x (,) l' 
<lT~. z 

+, , (z) c (z - Z ') ('-: ] (27a) 

d,c' _ £' 
(\7 ,Ill (27b) 
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are integrated numerically backward in time from the boundary conditions 

p'(T = t) '"" p, r'(r:ll: t) = r. The correlation function C is chosen to be the 
'.......... "".J f"'v rv 

exponential 

1 I z - z' I c (z - Z' ):- l'Xp - ---
(28) 

Z Z 
c c 

since we compare D~: with the results of a Monte Carlo simulation,20 for which 

it ~.;. simplest to generate numerically magnetic fields with an exponential corre-

lation function. The correlation distance z is the distance scale and the corre-
e 

lation time t "" Z ymip the unit of time. 
c c 

We first pick a ~'c'(z) and the boundary values 1" (: '"" t) and t (7" t). /~ for 

inclusion in (26) follows immediately from Eq. (22). (/\1:)' , on the other hand is 

the change in /L which results from the integration of Eqs. (27). This integration 

is carried out until the particle has moved typically a distance z' - z '2:' Hize in 

the direction of varying r)" (z'). 

The entire procedure is next averaged over a uniform distribution of : (t). 

The density with which the ;(t) must be chosen depends on" (t). 'When the latter 

is small (/_ (t) :;,' , (z)i ( , » particle mirroring is an important effect, as we shall 

see shortly. For small /" the /,'s are taken at 10 intervals in order to achieve 

convel'gl:lICe for the : -averaging process. For larger I' e' ,(z)i ( , » mirroring 

d0es not occur and it is sufficient to take :(t)'S which are 2° apart. 

The last step in the evaluation of DPA is the final averaging procedure, in 
1-* 

which we perform the steps of the preceding two paragraphs for several different 

values of " (z), typically 20, each weighted by the distribution 

, , 2 
p< ,) . _____ ('xp ----

.2," ( 
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Figures 1 to 3 depict D~: thus computed as a function of I" Each figure 

corresponds to particular values of 7/ Ie (;l" 2 ) 1/2/ (, ) and ' ., / m (,) zjp. 

The discrete points at which D~: is calculated are indicated. The solid curve 

is a spline fit to these points. Shown also on each graph is the curve of D QL vs 
'"IJ-

fJ. This quasi-linear diffusion coefficient is computed from the formula 

(29) 

which results when the exponential correlation function (28) is assumed. 

Equation (29) is the limiting T -, I value of the expression 

(t-r» 

wherever that limit exists. As we have mentioned earlier and demonstrated else-

where 25 this limit does not exist as I' -. 0 and indeed a quasi-linear diffusion co-

efficient is not properly defined at such small i' 's, 

We would point out three aspects of these figures: (1) the peaking and definitely 

non-zero value of D ~~ as i' - 0, (2) the fact that D~: is apprOXimately equal to 

but slightly less than D~,I,' fori.". and (3) the essential equality of DPA and 
• IJ-I-

D QL as I' - 1. These aspects are also characteristic of the diffusion coefficient 
IJ-IJ-

D obtained from Monte Carlo computer experiments. 20 
tIJl 

(b) Interpretation of the Differences between PA F and Quasi - Linear D's. 
IJ-,' 

We interpret the bump which appears in the vicinity of .. ., 0 as due to par-

tic1e mirroring: particles with pitch angles near 90° B.re dominantly affected by 

the maximum in (B). at z :E 0 and their' ,. 's are determined by magnetic moment 

conservation to be 

20 



· i 
~ 

[

1 _ ! - f/ 2 ] 1/2 _ j1 ::: 

""2 1/2 
(1 +T) ) 

( fi ), - /1 

(Without loss of generality we assume here that z = 0 is the point at which the 

(30) 

diffusion coefficient is to be evaluated.) Here ~ .. ;; B(O)/ ~m and I: is the co-

sine of the particle's pitch angle with respl ,t to the total (partially averaged) 

field ( B) . 
rv ' 

I i-1 
/1 .. -..---:--

( 1 
~"2 1/2 

.; T/ ) 

(31) 

Using Eq. (30) for /'01" and Eq. (22) for I", we determine the mirroring contribution 

to D;~ thus to be (cf. Eq. (26» 

~ 1/2 /' i 2'" 
nP.4. :- (1_/,6) .).", I" ( ; S1I1 
~~ 271 \ 

\ () 

(32) 

The ~ sign is included within the integral sign because the algebraic sign of (P), 

is dependent on ;; if it were not, (32) would clearly integrate to zero because p' 

depends only on cos:. and there would be no contribution of mirroring to the 

diffusion coefficient. Furthermore the sign cannot be just a functioa of cos : (as is 

the sign of J-l' ) or the same reasoning gives a zero result once again. We shall see 

that it is just the act of mirroring that injects the needed asymmetry about: ... 0, 

i.e., a dependence on sin;, to produce the peak of /) • O. 

To determine the sign of ( /" ). we proceed in the fUllowing heuristic fashion. 

Considpr the I' > 0 (but i!. ~ ':::' 0) particle at z ... 0 at t ... 0 in the partially averaged 

field. Depending on its : and I~ this particle's guiding center is at positive or 

negative z 
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(0) 

and its /.' (cf. Eq. (31)} is also positive or negative. If z and /' I are both> 0, 
GC 

its initial motion carries the particle to the right (to larger z) and we assert that 

(!d, > O. Similarly, if".r' and I,' are both "'0,(,,) ... O. On the other hand, if 
l" 

Z GC and 1/ have opposite algebraic signs, the particle's initial motion carries 

its guiding center toward z II:: 0 and stronger magnetic field so that mirroring is 

a possibility. If mirroring does occur - and we shall presently develop criteria 

for mirroring - ( " ). has the same sign as Z GC" If mirroring does not occur, 

( I. ), has the same sign as ;.'. In Figure 4, which depicts the transverse p., Py 

plane, mirroring may accur for "} > 0 in those sectors denoted by an "M'1". 

(Because of the symmetry of the distribution of ' B(O), we may restrict our con­

sideration to ~: > 0.) The Sib'll of I I' ), in the complementary sectors is also 

indicated. The angle A is given by 

When does mirroring in fact occur? We first applied the criterion that pre-

dicts mirroring when 

1 _ /' I l 
> 1 (34) 

(ll) (zGc) <ll), (;eO) 

On using "he approximation 
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plus the expressions (31) and (33) for 1/ and Z GC' the criterion for mirroring 

is equivalently written 

(35) 

The! -integration in Eq. (32) has been performed numerically. The ambiguity in 

the sign of (,,), in the regions of Figure 4 r rked by "M?" is resolved by test-

ing for the validity of (35) and assigning (,), the sign of Z GC if (35) is indeed 

satisfied. 

Following the procedure just prescribed, we have calculated the mirroring 

contribution to D l'A and found it in the vicinit\! of I' ... 0 to be typically a factor of 
/).1' .J • 

2 larger than the D PA determined by exact integration of orbits in the partiall\' 
UtL .J 

averaged magnetic field: mirroring has been introduced too strongly in our 

heuristic procedure. Much better agreement is obtained when we modify the mir-

roring requirement (34) as follows: 

1 
_ : 2 

" 
1 (36) > 

('I.. ,0) 

The additional factor in the denominator of the right side accounts for the fact 

that even when the guidin~ center if,; located at z a: 0 the particle itself is almost 

always at a weaker field strength, owing to the exp - ( ,z : he) fall-off in n •. 

We attribute the fact that D PA <' DQL in the regions ,. :> ' of Figs. 1-3 to 
J .. p. t .. J. 

another effect, which we shall try to explain heuristically in this section. In 

quasi-linear theory, a particle moves with the assumed constant momentum P" 

in the z-direction. As time increases from t = 0, the particle interacts iin ttll' 
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ensemble average) with a portion of the power spectrum of the fluctuations of 

ever-decreasing width: the effect on D QL of all Fourier components except that 
Illl 

at the resonant wave number k = E/I,u! z c ultimately averages to zero. 

The constancy of j1 and p are, however, only approximate. More accurately, 
1 

the particle attempts to maintain the constancy of ,u' , Eq. (31), which WA write in 

a slightly modified form as 

(37) 

Equation (37) can be integraten approximately to give 

[ 
P 2 1/2 ] T __ P (1 _1< 2)1/2 'r; [ 

z = rm I' + (1 - I') i; cos : r OJ ( , ) sin ( ; + (,) T) 

(38) 

Note that this z-motion includes an oscillaUon at the gyrofrequency < ,) , As a 

result, the particle never attains perfect resonance with a single Fourier mode 

and its interaction with the fluctuations is on the average diminished, 

To see this semi-quantitatively, we note that by approximately integrating 

Eq. (22) :', I' is given as 

E
< k P { (1 - 2) 1 /2 r }] (' x P __ Ii T - I' I lsi 11 (.' + (,) T) _ sin : 1 ,m (, ) (39) 
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Equation (39) differs from its quasi-linear analogue only in the fact that the oscil-

latory component of the z-motion is included, ,)in (38) has been approximated by 

I) and the '7 contribution to the rectilinear motior. has been discarded. 

It is now straightforward to calculate, using Eq. (26), the resonance contribu-

tion to DI-'I-" We use (22) for I'" (39) for tic, assume no correlation between dif­

ferent Fourier modes (the random phase 3,pproximation), and employ the expansion 

+cr 

(' X P (- i 1 sin ") ::': L P x P - i Ol ,) J m (r I) 

m =-0 

where the J 's are the ordinary Bessel Functions. The result obtained for the 
III 

exponential correlation function Eq. (28) is 

The quasi-linear result is recovered by letting " -. 0 inside of the summation, only 

the s "" 1 term survives and Eq. (29) readily follows. 

It is not obvious from Eq. (40) that the resonance interruption results in a 

diminfshed diffusion coefficient. We have, however, evaluated numerically as a 

function of I' the ratio 

'J} l 
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for several values of 'I and E. Its value is indeed::; 1 and its general behavior is 

quite similar to that of DI't\/I)l)L in Figs. 1-3 in ther; > 'I range. This finding is 
!1!1 !1!1 

the basis of our interpretation that resonance interruption is the reason that D:~ 

falls beneath D~; in this range. 

(C) Results for the Oblique Slab Model 

We have also evaluated D:~ using Eqs. (22), (26), and (27) for the situation 

where 

(41) 

The correlation C is again exponential (cf. Eq. (28)) but in this instance 

s - Z cos (t + Y sin (1-

so that planes of constant ! (,,~; I, are perpendicular to the y-z plane and inc lined 

at angle! with respect to the z-axis. (The perpendicular slab model considered in 

IlIa corresponds to (1 = 0). Since the final averaging is over an assumed spatially 

homogeneous distribution of 0 B2 (s), the position s is again irrelevant and we may 

withou.t loss of generality in (41) take z a: y" S = O. The processes of averaging 

numerically over : and cl B(s) are exactly as detailed in IIla. 

We display in Figure 5 results for DPA and DO:, for ~lie C''lse c ., 1.0, ',= O.~, 
Ill' i"··'· 

and (J .. 30°. Figure 5 is thus the counterpart of Fil,,'1lre 2 for the obliqup e.ituation. 

The obvious difference between the oblique and p'·,·rl.~!1dicular models is the strong 

suppression of diffusion at small pIS which non-perpendicularity introduces. This 

is true for both D:~ and D;lt . In additiO\; ,,', -perpendicularity apparently leads 

to enhancements of D in the region of maximum around I'" 0.5. The discrete 
Illl 

values of !1 for whier. Dil/s were explicitly evaluated are indicated in Fig. 5. The 

26 

I 

i 



1 

, 

~ 
I 
I 
I 

I 

1 
1 
\ 

I 
I 

distribution and number of such pOints is dictated by the length of the numerics 

involved in calculating D~~. For comparison we have also calculated D~~ at the 

same fL values. It is probable that the relatively small number of points in the 

region 11 ;; 0 leads to the suppression of srrall amplitude oscillations which char-

acterize the higher harmonic (of ( , ) ) interaction of particles and magnetic per-

turbations with spatial structure perpendicular to <~). It is known that such 

oscillations characterize D~J 16 and it is probable that they would also appear 

if D;'~ were calculated sufficiently densely in 11.. Our attitude is that if these 

oscillations have the same amplitude in D ~~ as they have in D~~ they are in­

consequential by comparison with the magnitude of D~~ (11. ~ 0). 

As we shall see in Section IV, the spatial diffusion coefficient KII parallel to 

(B) varies inversely with D . The important inference to be gained therefore 
~ ~~ 

from Fig. 5 is that the oblique slab situation is more conducive to parallel spatial 

~l'ansport than is the perpendicular slab. Extrapolating to the case of the inter-

planetary medium, we expect that quasi-planar magnetic structures propagating 

radially outward from the sun undergo transition from a perpendicular slab-like 

situation to the oblique slab case as the idealized <B) develops spirally. 22 Given 

constant ' and t. ,K
11 

should therefore ideally decrease with approaching distance 

to the sun. 

IV. Spatial Transport and the Scaling of D~~ (I~ :: 0) 

Let us assume that pitch angle diff1lsion theory is true locally and that D ~~ 

is properly given by partially averaged fie:d theory. We re-introduce a spatial 

gradient in the z-direction with scale much longer than z c • and suppressing the 

suffix "0" rewrite Eq. (23) as 
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at 
a (£} 

+jJ.V -­
()z 

a a (f) 
- D~~ (z, v, jJ.) --,-

djJ. 0Il. 

r , 
\ 

I 
I 

(42) 

Contact with the macroscopic variables - density n, flux <1> etc. - is made by 

taking moments of Eq. (42) with respect to /1.. Particle conservation 

(In 
-:: - J

+l 

dfl.jJ.V 

-1 
(')t 

~) 
=-v- <1> 

elz 

dz i
+1 

= - v a~ d 11. jJ. (f) 

-1 

(') ([) 

(43) 

follows excctly by taking the zeroth moment and noting that there can be no dif-

fusive flux D~~ (1 (1'> rill at the boundaries Ii" ±l in fl. space. 

There exist a variety of methods for expressing <1> = J 1 dfl.l> <f> in terms of 
-1 

27 
n and thus obtaining a closed equation for n. The standard transport theory method 

is to expand <f> in Legendre Polynomials and truncate the series after PI (fl.). ThiR 

yields a standard diffusion equation for n 

where 

in d L dn 
-at ;)z K II {'\Z 

f 1 d I~ DIlIl (11) 

-1 

(44) 

(45) 

Alternatively one could expand (f) in eigenfunctions of the diffusion operat.or 

,if 'I' D r'/dfl and obtain an alternate expression for K ,E, 28: 
Illl 

Ki " [ Tj V~j (46) 

I = odd 
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where the T. are the eigenvalues of the equation 
1 

(47) 

and 12 

(48) 

Due to the difficulty in obtaining so~"tion!': to (47), however, the usefulness of this 

approach is limited. 

A third approach, due to Jokipii, 1 is to solve the approximate equation 

(\ 
flV -

dZ 

by inverting the diffusion operator to obtain 

(f> = -~ iiL d fl' (1 _ fl'2)/D (fl') ~'n 
4 Iklk c' Z 

o 

where we further approximate 

,.t (f) 

()z 

Inverting (50) into (43) yields (44) once again but with 

(49) 

(50) 

(51) 

In all of the above methods the time derivatives of all of the components of 

(f) with the exception of the isotropic one, n, are neglected when compared to 

the streaming and diffusive terms. 
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Earl 12 has compared the three approaches extensively and has concluded 

that the third one is the correct approach to employ. While we hesitate to call 

any approximation scheme "correct," we do concur that the third method has 

many arguments in its favor and is the result of a fully systematic approximation 

scheme. 

However, it is known that if D (fl) ct (1 - p 2) representing isotropic scatter-
iJ-1l 

ing, all three methods lead to the identical value for ,,' iI. Therefore if the form 

of D (;.1) is not too different from that of isotropic scattering one would not ex­
iJ-iJ-

pect it to matter very much which approach was used and convenience should 

dictate, especially in the field of astrophysics where the quantitative input is 

usually of a somewhat approximate nature. 

We have computed values of k II by both the Legendr3 expansion method (k~') 

and the third or inversion method (K If) for the fO'Jr sets of parameters for which 

we have complete curves of DPA (/<). The results are shown in Table 1. 
Illl 

As would be expected, the differences are most pronounced where DPA(i. "" 0) 
Ull 

is the smallest. The case t = I, ,: ... 1 for the perpendicular slab may also be 

compared with the results of Goldstein 29 who calculated D iJ-iJ- by an independent 

non-linear method 15 and used Eqs. (45) and (51) to calculate K~ and Kif (Goldstein 

uses the symbol K D rather than our Kill.) Goldstein obtains KI~ ,., 115 and" J .. 165. 

The near identity of "L with our results reflects the insensitivity of k n
L (cf. Eq. 45) 

II 

to D ( = 0), while his larger" 1 is the result of the fact that his non-linear method 
Illl II 

leads tt smaller D than ours in the region /< ~, 0 (cf. Eq. 51). 
Ill-' 

Sir . k II depends inversely on the magnitude of D Illl a knowledge of how DI.<I' 

scales with the parameters ' and '; would be of use in estimating the way K II 

varies with the power in the fluctuating fields and particle rigidity. Since 
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"II depends on the shape of D as a function of II as well as the overall mag-
/.L/.L 

nitude a simple scaling will not tell the whole story. However, since the value of 

KII in Eq. (51) depends rather sensitively on the value of D /.L/.L at II" 0 we have 

chosen this value as the scaling quantity of interest. We have therefore computed 

DPA(pE 0) for the nine different cases resulting from the combination of the 3 (­
/.L/.L 

values .25, I, and 4 with the 3 T/-values .05, .1, and .3, and we have attempted from 

these 9 cases to fit D~~ (p = 0) to the form 

For each value of E we determined that m which gave best fit to the theoretically 

determined values for the 3 ~i' s. The linearity of log lD ;':(11 s: 0)] vs log TI is ex­

cellent for each value of E. The optimum m-values are 2.24, 2.30, and 2.34 for 

the cases 'c E .25, 1 and 4 respectively. 

Similarly we determined q's holding each of the 3 values of "fixed. The 

linearity of log lDPA(p. = 0) vs log E at constant 'I is again excellent. The opti­
/.L/.L 

mum q-values a.e ,5!:l (fl"" .05), .60(r; E .1) and.6-1 h" .3). Combining fits we 

propose the empirical scaling 

(52) 

A similar effort to scale the values of D/.LIL obtained from the Monte Carlo 

simulations described in the companion paper yields 20 

(53) 

It is difficult to say whether the difference between the indices in Eqs. (52) and 

(53) is significant. But it is interesting to note that if one adopts the heuristic, 
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mirroring picture described in Section III one comes up with a scaling 

jntermediate between the two. 

V. Range of Validity of Partially Averaged Field Theory 

All theories, whether quasilinear or non-linear, compute the effects of the 

random force field on a collection of particles by summing its instantaneous 

effects along some particular particle orbit or collection of orbits until the ran-

dom force on the particle becomes self-incoherent. In the quasilinear theory 

the orbit employed is the one the partic Ie would have if the random part of the 

force were absent and we shall investigate how rapidly the actual orbit deviates 

in a significant way from this approximate orbit. In the following we shall con-

tinue to limit ourselves to the slab model of Section III. This li~itation is for 

the sake of illustration only and does not limit the validity of our conclusions. 

The quasilinear orbit is characterized by z 0: J.L vt. /1 = const. but in fact, J.L 

will be changed by the random field by an amount 

(54) 

where in th~s section 0,,: refers to the RMS value. If C(,; ~ (,) then- i. will be-

come of order unity in a time T D which we shall call the deflection time where 

T D - (:1 , ) - I for ~ ,~ (,) (55) 

If :, (u «( ,) then", /, will oscillate with a frequency (,) and an amplitude of order 

(J"j (, ) I: ri. However, due to the random scattering of the pitch angle, the deflec-

tion in /, will grow in time as 

(56 ) 
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where D!1.!1. is the pitch angle diffusion coefficient calculated by the theory in 

question. In this case the deflection time is given by 

T - (D ) - 1 for 0,'« (,) 
D /k/k 

(57) 

Clearly the random force must become incoherent in a time short compared 

to TO but there is another time of interest. The deflection time is a measure of 

how rapidly the particle orbit becomes unreli&.ble in velocity space but the orbit 

can also become unreliable in coordinate space (in this model the z coordinate 

is the only one that matters). If 11 is uncertain by an amount :-1' (t) the z c00rdi-

nate will be uncertain by an amount 

(5~) 

1 
::- - V ., t 2 for "::~ (,) 

2 

or 

- v t " ( ,) for", ---< (,) 

If this uncertainty in coordinate space grows to be of the order of the correlation 

length 7., which is the characteristic scale of variation of the random field, the 

unperturbed orbit becomes quite useless. The time in which this occurs is called 

the deviation time and is given by 

_ (2-.) 1/2 
T .. 

d V ()?J. 

( , ) 

for « (,) . (59) 
v ,~, J. 
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We further require that this deviation time be long compared to the time required 

for the random force to become self-incoherent. 

Just as we have defined two time scales over which the approximate particle 

orbit becomes unreliable we may define two coherence time scales, one for con-

figuration space and one for velocity space. This is possible because the random 

force- F= (q/c) v x 813 (z) depends on both z and v. Clearly the shorter of these 
,~ --

two times is the time over which- F becomes incoherent . . . 

The correlation length z is defined as the length scale over which the ran-
(' 

dom field ;: B becomes self-incoherent, it is therefore natural to define the £2!= 

relation time Tc as the time required for the particle to travel one correlation 

length along its unperturbed orbit. In quasi-linear thL'ory this is given by 

l' 
(GO) 

J.lV 

We may further define the coherence time ~~ as the time required for the velocity 

of the particle to become self-incoherent as it travels along its unperturbed orbit. 

In quasi-linear theory the orbit is fixed for all realizations of the ensemble so the 

particle's velocity has no stochastic component and hence never becomes self-

incoherent. Therefore obviously in quasi-linear theory T~. = 'and T c is the de-

termining coherence scale. This is not the case in PAlo' theory. 

We have defined two time scales over which the orbit used in calculations 

becomes unreliable, one for configuration space and one for velocity space. In 

the same vein we have defined two time scales over which the random force be-

comes self-incoherent, again one for configuration space and one for velocity 

space. In Table 2 we list these four time scales for future reference. We require 

of any theory that 
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shorter of Te , T./ < shorter of TIJ , Ttl" (61) 

In Table 2 we have listed the symbol, name and meaning of each of the four time 

scales that we have defined here. 

We turn now to a comparison of the ratios 7 .. lTD' Tc /, etc. as given iJy 

quasi-linea" lheoryand PAFtheory. ~n the interest of saving space we shall not 

write down all of the time scale ratios that can be formed although it is a simple 

matter to do so. We shall rather only explore the consequences of the constraint 

(61). 

or 

In quasi -linear theory the requi rement T < T leads to the constra~nt 
C D 

z ,", 
/" > -' -- far " ,?, (,) 

v 

( 
z \ 

I'> _"I D, (,,) far 
v / ,." 

<.-: (I) 

For strong random fields this condition cannot iJe met for all (if any) values of JJ 

but for weak random fields the conLiition can be met if the power spectrum ~oes 

1 k -2 or steeper for high frequencies (Le. D ,(I') goes to zero with 
I-I· 

linearly 

or faster). 

If, however, one turns to the requi rement that ~ c <C 7 d one finds for > 

(ti:3 ) 

not much different than iJefore but for «' ( ) the requirement is 

':> ( ) (ti4) 
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~ condition that cannot be met for all values of /'. We see therefore that quasi-

linear theory will always have trouble as /1' o. 

The various non-linear theor ies and PAF theory in particu lar were intro-

duced to obviate this problem in the vicinity of " II: O. This is achieved in PAF 

theory by allowing the fluctuating part of the field to influence the orbit to lowest 

order. If ,l,« (, i this infl flenee may be approximated 

z( t) ::;- [/. 2 1 ,., 2' (, ) 2 11/2 vI (65) 

and hence 

I 
" (66) 

[/.2 + .,2' (,) 2: 1/2 v 

Since this is equivalent to replacing /' with an effective "df . 1,,2; 

a giance at (62) and (U4) indicates that the troubles at I '"' 0 are avoided. 

However, for the case of strong fluctuati~g fields, ,~'. (,) this substitution 

of I'dI' for I' is not a valid approximation. In fact for certain configurations of 

the fluctuatirlg fields (other than the slab mode)) the particles can be trapped in 

the vicinity of the origin for an indefinitely lO'.lg time and " can become essen-

tially infinite. In this Situation we are saved by the fact that the coherence time 

'"(: which was infinite in quasi linear theory is finite in PA F theory and can be the 

shorter of the correlation/coherence times. 

In PAF theory the velocity vector is turned not at the fixed frequency 

l'ut at the frequency characteristic of the partially averaged Held 

q l '8> 2 • 8 ]' 1/2 
J • (67) 

Illl' 
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During final averaging this frequency will be spread over an amount ,IlL where 

t: , ;;; (; , for ;.":; (,) 

;\ , ~; .' ,2 (,) for ,,« (,) 

The velocity vector will thus become self-incoherent in a time T c' given by 

/ I _ (/\ , ) - 1 - ;." - 1 for ,:;, (,) 
c 

We now find for the various ratios 

c 

2 
Since as v -+ 0, Dj,lj,l Q 

(, I 

Til 

'T 

Z 
l' 

v 

- 1 

d 

2 for « (,) . 

(, i 

(, ) D1'1-1 
, 2 /./ (.; 

(~) 
1/2 

(, ) 

. ,-/ < i 

(61:3) 

(69) 

where u ," '. the only ratio that does not go to zero as \' -. 0 is ,,: /. IJ in the stron~ 

field cas<>. So we see that even in the case of strong random fields and low rigidity 

particles there exists an effect that destroys the coherence oC the random force at 

least on the same time scale that the orbit becomes unreliable. 

Non-linear theories represent an improvement over quasi-lincar theury fur 

one primary reason: they employ a more realistic description oC partic:le orbits 
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in determining the effects of the fluctuating fields on the particles themselves. 

We have seen that one of t!le effects of this description is the limiting of the cor-

relation time to a more realistic value such that the resulting calculation remains 

of marginal validity for a much wider range of parameters. This is true for PAF 

theory and would presumably be true for any non-linear theory that correctly de-

scribes the loss of coherence over'the ensemble of the particle's velocity vector. 
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APPENDIX A 

Conditional Averaging for Multi-Dimensional 

Gaussian Processes 

Consider a six dimensional vector x made up of two three dimensional 

vectors x and XI 
\ ... [1 ~ ) 

(AI) 

We wish to find the average value of ~b under the condition that '5 a = ~ay. If 

the joint probability density for ~a and ~I> 

have 

is given as a function of x as P(x) we 
"" "" 

Note that 

X :: X 
'"""-';} ,"",,-,rI 

= fJ6X-eX -x)x pex)/p(x-,) 
'.1 -vtl ~ ...... .! .... b ~-' '..."H 

i k • x, 
X - _ i __ (' ""'-..II) ~l) 

_h \ k 
· ..... h 

- -I 
i k • x 

(. "-' "...I 

k ~ II 

where k like x is six dimensional. Further, writing the delta function as a 
'"'" rv 

Fourier integral 

c (x - X ) = 1 J d 3 k"", • ... fI ....... ,i:t _ 

(2,,)3 

I k I • (x -x) 
t.' ,' ... <1 ,,,,,a " ... <1 

i k;· (x - -X-) 
('" '" '-

k' - 0 
",I> 
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where ~' is also six dimensional, we may insert these expressions into (A2) to 

obtain 

(A3) 

where K""k+k'. 
~ --v r"\.,J 

The quantity in square brac!;:ets is the characteristic function of the distribu-

tion function P(x) 
"-, 

Characteristic fn. P (~,) - (f' < . rX) 
,,~ 

If x is a Gaussian process the distribution P(~) is a multivariate Gaussian 31 

p (~) (2,,)-3 IMI-l l'Xp (- ~ X • M- 1• J 
2 ,,~ ~~/ 

(A4) 

V,bere ~-1 is the inverse of the covariance matrix ~,i.e., M i j < Xi X J) an 

obviously symmetric matrix. In complete analogy wit~ a one dimensional Gaussian 

distribution it is straightforward to show that 

(A5) 

If we now break ~ up into the three by three matrices ~ :C~a ~a) "" <'5" ~b> and 

~ = <~a ~I,)' C T = ('Sl ~,,> where we have assumed that the marginal distributions 

for ~a and ~" are identical we have 

and K· M • K == K • S • K + K • S • K + K • (' • K + K • (. I • K 
rv ~ ""-' ,-.."...a ~~ ........... a .!.Jl ~ , ...... b r--.....-a ~ ",,-,h r.wl) r~ - __ a 
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Thus 

a ~ 
- P(K) 
ak '"v 
~b 

We have now 

= - - -- K· M • K l' (K) 1 ~ a ) '"'"' 
2 ak. "-' ~ '" '" 

k = k ' = 0 ,,-,D 
"-' rvb 

'V 

- (K b • S + K • C) P (K) k = k ' = () 
.........., ~ ~J. ~ ~ ,......., "'"'-..,;b 

=: - k, ' • (' l'X P (- 2. k ' • S • k ,) 
",-",1 ~ 2 /'"Va ~........,a 

(
a 

ax 
.-va 

p(x ) 
~ 

= (x • S-I ) • C 
rovj ~ ~ 

I 
I k = k ' = () 
'" ,,-,b 

(Ab) 
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APPENDIX B 

The Gyrotropy of (f) 

Consider the equation for <f) 

lEI) 

where DU) represents. the complete collision operator. If D(::,) were not a func-

tion of the gyro-phase i , we could average this equation over :' and remove it 

from the problem but the t· dependence of D and (f) will average together to 

produce an unknown phase correlation. 

Let us break < f) into a gyrotropic part <f) 0 and a -: dependent part < f) l' 

If we indicate the average over gyrophase of a quantity by placing a bal over it, 
- -

we further specify that <f)= <f)o and <f) 1:r: O. 

Inserting in (BI) and averaging over : gives 

(B2) 

Subtracting (B2) from (Bl) gives 

; <f) 1 <f) 
t <-) .. : 1 

,t 
(B3) 

We now shall es+ <l;a\. 'J wrms in (B3) as follows 

to obtain 

(B4) 
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where we now assume '1 2 « 1 and we neglect 7)2(,,> <f)1 compared to(w)<f)I' 

Integrating (B4) with <f) 1 (t = 0) = 0 gives 

(B5) 

for t » < w) - 1. 

We see from (B5) that <f) 1 is 0 (7) 2) if <f) 0 is 0 (1); therefore the second tl~rm 

on the right hand side of (B2) is of 0 (7) 4) and may be neglected. 
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Table 1 

The Parallel Spatial Diffusion Coefficients as Calculated 

Using D~~ by the Legendre and Inversion Methods 

Case L <) / 2 KJ () KII ' ,v 
II 

'1,= .05, 1 slab 456 622 

TI = .1, 1 slab 115 137 

1;= .3, 1 slab 13.06 13.48 

ri~ .1, oblique slab 162 367 
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Symbol 

'i" 
D 

'T 
d 

7 
L" 

7' 
e 

Name 

Deflection time 

Deviation time 

Table 2 

Time &ales 

Meaning 

Time required for orbit to become 

unre liable in .. eloci ty space 

Time required for orbit to become 

unreliable in configuration space 

Corre lation time Time required for magnetic field 

to become self-incoherent 

Coherence time Time required for velocity to be-

come self-incoherent 
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Figure Captions 

Figure 1. The diffusion coefficient D'"11 for the perpendicular slab model when 

t; II: Ie m I (,)/p II: 1 and 'I'" (c,B2) !12/(B) = .05. 

Figure 2. D vs. I~ for the perpendicular slab model when l = 1 and '/ = .1 
IlIL 

Figure 3. Dill-' vs. I' for the perpendicular slab model when t .. 1 and '/ = .3 

Figure 4. The p x' Py plane showing regions where particle exi ts toward + z 

(~> > 0), particle exits toward - z (<1">- ' 0), and where mirror-

ing can possibly occur (indicated by "M?"). 

Figure 5. Dpt" vs. I' for the oblique slab model when' = 1 and', "" .1 
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Figure 4. The P" P, plane showing regions where particle exits toward +z (Cd ' 0), particle 
exits toward -z ( -( ,L \ '0), and where mirroring can possibly occur (indicated by "M?"). 
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