8,831 research outputs found

    Search for low lying dipole strength in the neutron rich nucleus 26^{26}Ne

    Full text link
    Coulomb excitation of the exotic neutron-rich nucleus 26^{26}Ne on a nat^{nat}Pb target was measured at 58 A.MeV in order to search for low-lying E1 strength above the neutron emission threshold. Data were also taken on an nat^{nat}Al target to estimate the nuclear contribution. The radioactive beam was produced by fragmentation of a 95 A.MeV 40^{40}Ar beam delivered by the RIKEN Research Facility. The set-up included a NaI gamma-ray array, a charged fragment hodoscope and a neutron wall. Using the invariant mass method in the 25^{25}Ne+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV. The reconstructed 26^{26}Ne angular distribution confirms its E1 nature. A reduced dipole transition probability of B(E1)=0.49±\pm0.16 e2fm2e^2fm^2 is deduced. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is obtained. The results are discussed in terms of a pygmy resonance centered around 9 MeV

    Stresses in isostatic granular systems and emergence of force chains

    Full text link
    Progress is reported on several questions that bedevil understanding of granular systems: (i) are the stress equations elliptic, parabolic or hyperbolic? (ii) how can the often-observed force chains be predicted from a first-principles continuous theory? (iii) How to relate insight from isostatic systems to general packings? Explicit equations are derived for the stress components in two dimensions including the dependence on the local structure. The equations are shown to be hyperbolic and their general solutions, as well as the Green function, are found. It is shown that the solutions give rise to force chains and the explicit dependence of the force chains trajectories and magnitudes on the local geometry is predicted. Direct experimental tests of the predictions are proposed. Finally, a framework is proposed to relate the analysis to non-isostatic and more realistic granular assemblies.Comment: 4 pages, 2 figures, Corrected typos and clkearer text, submitted to Phys. Rev. Let

    Multifractal Dimensions for Branched Growth

    Full text link
    A recently proposed theory for diffusion-limited aggregation (DLA), which models this system as a random branched growth process, is reviewed. Like DLA, this process is stochastic, and ensemble averaging is needed in order to define multifractal dimensions. In an earlier work [T. C. Halsey and M. Leibig, Phys. Rev. A46, 7793 (1992)], annealed average dimensions were computed for this model. In this paper, we compute the quenched average dimensions, which are expected to apply to typical members of the ensemble. We develop a perturbative expansion for the average of the logarithm of the multifractal partition function; the leading and sub-leading divergent terms in this expansion are then resummed to all orders. The result is that in the limit where the number of particles n -> \infty, the quenched and annealed dimensions are {\it identical}; however, the attainment of this limit requires enormous values of n. At smaller, more realistic values of n, the apparent quenched dimensions differ from the annealed dimensions. We interpret these results to mean that while multifractality as an ensemble property of random branched growth (and hence of DLA) is quite robust, it subtly fails for typical members of the ensemble.Comment: 82 pages, 24 included figures in 16 files, 1 included tabl

    The Role of Friction in Compaction and Segregation of Granular Materials

    Full text link
    We investigate the role of friction in compaction and segregation of granular materials by combining Edwards' thermodynamic hypothesis with a simple mechanical model and mean-field based geometrical calculations. Systems of single species with large friction coefficients are found to compact less. Binary mixtures of grains differing in frictional properties are found to segregate at high compactivities, in contrary to granular mixtures differing in size, which segregate at low compactivities. A phase diagram for segregation vs. friction coefficients of the two species is generated. Finally, the characteristics of segregation are related directly to the volume fraction without the explicit use of the yet unclear notion of compactivity.Comment: 9 pages, 6 figures, submitted to Phys. Rev.

    Nonequilibrium brittle fracture propagation: Steady state, oscillations and intermittency

    Full text link
    A minimal model is constructed for two-dimensional fracture propagation. The heterogeneous process zone is presumed to suppress stress relaxation rate, leading to non-quasistatic behavior. Using the Yoffe solution, I construct and solve a dynamical equation for the tip stress. I discuss a generic tip velocity response to local stress and find that noise-free propagation is either at steady state or oscillatory, depending only on one material parameter. Noise gives rise to intermittency and quasi-periodicity. The theory explains the velocity oscillations and the complicated behavior seen in polymeric and amorphous brittle materials. I suggest experimental verifications and new connections between velocity measurements and material properties.Comment: To appear in Phys. Rev. Lett., 6 pages, self-contained TeX file, 3 postscript figures upon request from author at [email protected] or [email protected], http://cnls-www.lanl.gov/homepages/rafi/rafindex.htm

    Probing pre-formed alpha particles in the ground state of nuclei

    Full text link
    In this Letter, we report on alpha particle emission through the nuclear break-up in the reaction 40Ca on a 40Ca target at 50A MeV. It is observed that, similarly to nucleons, alpha particles can be emitted to the continuum with very specific angular distribution during the reaction. The alpha particle properties can be understood as resulting from an alpha cluster in the daughter nucleus that is perturbed by the short range nuclear attraction of the collision partner and emitted. A time-dependent theory that describe the alpha particle wave-function evolution is able to reproduce qualitatively the observed angular distribution. This mechanism offers new possibilities to study alpha particle properties in the nuclear medium.Comment: 4 pages, 3 figure

    Structure of unbound neutron-rich 9^{9}He studied using single-neutron transfer

    Get PDF
    The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.Comment: Exp\'erience GANIL/SPIRAL1/MUST

    Proton Driven Plasma Wakefield Acceleration

    Full text link
    Plasma wakefield acceleration, either laser driven or electron-bunch driven, has been demonstrated to hold great potential. However, it is not obvious how to scale these approaches to bring particles up to the TeV regime. In this paper, we discuss the possibility of proton-bunch driven plasma wakefield acceleration, and show that high energy electron beams could potentially be produced in a single accelerating stage.Comment: 13 pages, 4 figure
    corecore