16 research outputs found

    Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance

    Get PDF
    Host resistance and fungicide treatments are cornerstones of plant-disease control. Here, we show that these treatments allow sex and modulate parenthood in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that the Z. tritici–wheat interaction complies with the gene-for-gene model by identifying the effector AvrStb6, which is recognized by the wheat resistance protein Stb6. Recognition triggers host resistance, thus implying removal of avirulent strains from pathogen populations. However, Z. tritici crosses on wheat show that sex occurs even with an avirulent parent, and avirulence alleles are thereby retained in subsequent populations. Crossing fungicide-sensitive and fungicide-resistant isolates under fungicide pressure results in a rapid increase in resistance-allele frequency. Isolates under selection always act as male donors, and thus disease control modulates parenthood. Modeling these observations for agricultural and natural environments reveals extended durability of host resistance and rapid emergence of fungicide resistance. Therefore, fungal sex has major implications for disease control

    Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1−xO3 (x = 0 and 0.02) ceramics

    No full text
    The effects of 2% Zr introduction in Ba0.8Ca0.2TiO3 (BCT) system on its electrical and electrocaloric properties was investigated. BCT and Ba0.8Ca0.2Zr0.02Ti0.98O3 (BCZT) ceramics synthesized by solid-state processing were crystallized in a pure perovskite phase with a group space P4mm. After Zr insertion, the enhanced dielectric constant was obtained around the Curie temperature (Tc) in BCZT ceramic (Δr = 6330 at Tc = 388 K) compared to BCT ceramic (Δr = 5080 at Tc = 388.6 K). Moreover, the large-signal piezoelectric coefficient (d∗33) was improved from 270 to 310 pm/V in BCT and BCZT ceramics, respectively, under a moderate electric field of 25 kV/cm. The electrocaloric effect was determined via indirect and direct methods. In the indirect approach, the electrocaloric temperature change (ΔT) was calculated via Maxwell relation, and the measured ferroelectric polarization P (E, T) extracted from the P–E curves recorded at 24 kV/cm. The maximum values of ΔT = 0.68 K and the electrocaloric responsivity ζ = 0.283 K mm/kV obtained at 385 K in BCZT ceramic were found to be higher than those observed in BCT ceramic (ΔT = 0.37 K and ζ = 0.154 K mm/kV at 387 K). In the direct approach, ΔT was measured utilizing a modified high-resolution calorimeter at 14 kV/cm. As the direct method is more sensitive to the latent heat, it provided larger values for smaller applied field, i.e., ΔT = 0.474 and 0.668 K for BCT and BCZT ceramics, respectively. A significant ζ of 0.477 K mm/kV was obtained in BCZT at 385 K and 14 kV/cm that matches the values found in lead-based materials. These results suggest that BCZT lead-free ceramics could have an excellent potential to be used in solid-state refrigeration applications

    Developing Cell-Based Therapies for RPE-Associated Degenerative Eye Diseases

    No full text
    International audienc
    corecore