12,211 research outputs found
On the predictive power of Local Scale Invariance
Local Scale Invariance (LSI) is a theory for anisotropic critical phenomena
designed in the spirit of conformal invariance. For a given representation of
its generators it makes non-trivial predictions about the form of universal
scaling functions. In the past decade several representations have been
identified and the corresponding predictions were confirmed for various
anisotropic critical systems. Such tests are usually based on a comparison of
two-point quantities such as autocorrelation and response functions. The
present work highlights a potential problem of the theory in the sense that it
may predict any type of two-point function. More specifically, it is argued
that for a given two-point correlator it is possible to construct a
representation of the generators which exactly reproduces this particular
correlator. This observation calls for a critical examination of the predictive
content of the theory.Comment: 17 pages, 2 eps figure
A possible signature of terrestrial planet formation in the chemical composition of solar analogs
Recent studies have shown that the elemental abundances in the Sun are
anomalous when compared to most (about 85%) nearby solar twin stars. Compared
to its twins, the Sun exhibits a deficiency of refractory elements (those with
condensation temperatures Tc>900K) relative to volatiles (Tc<900K). This
finding is speculated to be a signature of the planet formation that occurred
more efficiently around the Sun compared with the majority of solar twins.
Furthermore, within this scenario, it seems more likely that the abundance
patterns found are specifically related to the formation of terrestrial
planets. In this work we analyze abundance results from six large independent
stellar abundance surveys to determine whether they confirm or reject this
observational finding. We show that the elemental abundances derived for solar
analogs in these six studies are consistent with the Tc trend suggested as a
planet formation signature. The same conclusion is reached when those results
are averaged heterogeneously. We also investigate the dependency of the
abundances with first ionization potential (FIP), which correlates well with
Tc. A trend with FIP would suggest a different origin for the abundance
patterns found, but we show that the correlation with Tc is statistically more
significant. We encourage similar investigations of metal-rich solar analogs
and late F-type dwarf stars, for which the hypothesis of a planet formation
signature in the elemental abundances makes very specific predictions. Finally,
we examine a recent paper that claims that the abundance patterns of two stars
hosting super-Earth like planets contradict the planet formation signature
hypothesis. Instead, we find that the chemical compositions of these two stars
are fully compatible with our hypothesis.Comment: To appear in Astronomy and Astrophysic
CORPORATIONS-SHAREHOLDERS-RIGHT TO BRING PERSONAL ACTION AFTER DISSOLUTION OF CORPORATION
Plaintiff stockholder brought a personal action against the president and majority stockholder for fraudulent conversion of money and property of a corporation dissolved prior to the start of plaintiff\u27s suit. A statute provided that a dissolved corporation could sue to recover on a corporate right of action. Defendant\u27s demurrer was sustained. On appeal, held, affirmed. An action to enforce corporate injuries cannot be maintained by a stockholder in his own name, even though the corporation has been dissolved. Ruplinger v. Ruplinger, (Neb. 1951) 48 N.W. (2d) 73
Electrical characterization of a Mapham inverter using pulse testing techniques
Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems
Metal-Organic Frameworks: Literature Survey and Recommendation of Potential Sorbent Materials
Metal-organic frameworks (MOFs) are a special type of porous material with a number of unique properties, including exceptionally high surface areas, large internal pore volumes (void space) and tunable pore sizes. These materials are prepared through the assembly of molecular building blocks into ordered three-dimensional structures. The bulk properties of the MOF are determined by the nature of the building blocks and, as such, these materials can be designed with special characteristics that cannot be realized in other sorbent materials, like activated carbons. For example, MOFs can be constructed with binding sites or pockets that can exhibit selectivity for specific analytes. Alternatively, the framework can be engineered to undergo reversible dimensional changes (or 'breathing') upon interaction with an analyte, effectively trapping the molecule of interest in the lattice structure. In this report, we have surveyed the 4000 different MOF structures reported in the open literature and provided recommendations for specific MOF materials that should be investigated as sorbents for this project
Recommended from our members
High power 405 nm diode laser fiber-coupled single-mode system with high long-term stability
Fiber-coupled 405 nm diode laser systems are rarely used with fiber output powers higher than 50 mW. A quick degradation of fiber-coupled high power modules with wavelengths in the lower range of the visible spectrum is known for several years. Meanwhile, the typical power of single-mode diode lasers around 400 nm is in the order of 100 to 300 mW, leading to single-mode fiber core power densities in the 1 MW/cm² range. This is three magnitudes of order below the known threshold for optical damage. Our profound investigations on the influence of 405 nm laser light irradiation of single-mode fibers found the growth of periodic surface structures in the form of ripples responsible for the power loss. The ripples are found on the proximal and distal fiber end surfaces, negatively impacting power transmission and beam quality, respectively. Important parameters in the generation of the surface structures are power density, surface roughness and polarization direction. A fiber-coupled high-power 405 nm diode laser system with a high long-term stability will be introduced and described
Parallel Load Balancing Strategies for Ensembles of Stochastic Biochemical Simulations
The evolution of biochemical systems where some chemical species are present with only a small number of molecules, is strongly influenced by discrete and stochastic effects that cannot be accurately captured by continuous and deterministic models. The budding yeast cell cycle provides an excellent example of the need to account for stochastic effects in biochemical reactions. To obtain statistics of the cell cycle progression, a stochastic simulation algorithm must be run thousands of times with different initial conditions and parameter values. In order to manage the computational expense involved, the large ensemble of runs needs to be executed in parallel. The CPU time for each individual task is unknown before execution, so a simple strategy of assigning an equal number of tasks per processor can lead to considerable work imbalances and loss of parallel efficiency. Moreover, deterministic analysis approaches are ill suited for assessing the effectiveness of load balancing algorithms in this context. Biological models often require stochastic simulation. Since generating an ensemble of simulation results is computationally intensive, it is important to make efficient use of computer resources. This paper presents a new probabilistic framework to analyze the performance of dynamic load balancing algorithms when applied to large ensembles of stochastic biochemical simulations. Two particular load balancing strategies (point-to-point and all-redistribution) are discussed in detail. Simulation results with a stochastic budding yeast cell cycle model confirm the theoretical analysis. While this work is motivated by cell cycle modeling, the proposed analysis framework is general and can be directly applied to any ensemble simulation of biological systems where many tasks are mapped onto each processor, and where the individual compute times vary considerably among tasks
- …