Abstract

Local Scale Invariance (LSI) is a theory for anisotropic critical phenomena designed in the spirit of conformal invariance. For a given representation of its generators it makes non-trivial predictions about the form of universal scaling functions. In the past decade several representations have been identified and the corresponding predictions were confirmed for various anisotropic critical systems. Such tests are usually based on a comparison of two-point quantities such as autocorrelation and response functions. The present work highlights a potential problem of the theory in the sense that it may predict any type of two-point function. More specifically, it is argued that for a given two-point correlator it is possible to construct a representation of the generators which exactly reproduces this particular correlator. This observation calls for a critical examination of the predictive content of the theory.Comment: 17 pages, 2 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019
    Last time updated on 27/12/2021