34,701 research outputs found
Herbage intake in Danish Jersey and Danish Holstein steers on perennial ryegrass/white clover pasture
The objective of this study was to estimate herbage intake in Danish Friesian and Danish Jersey steers at an age of 8-9 months on ryegrass / white clover pasture. The steers were turned out on pasture in late April and herbage intake was estimated in June in steers of a mean live weight (± S.D.) of 264 ± 14 kg and 185 ± 25 kg for Danish Friesian and Danish Jersey respectively. Faeces and herbage samples were analysed for alkanes to estimate herbage dry matter intake, dry matter digestibility (DMD) and botanical composition of intake. The weight gains at the time of herbage intake estimation in June (kg/day) were 1.142 ± 265 kg/day and 0.927 ± 168 kg/day for Danish Friesian and Danish Jersey respectively. Daily herbage intake (kg dry matter (DM)) estimated by alkanes C32 /C33 was 8.33 ± 0.97 and 6.28 ± 0.61 per day (P<0.001) and 3.15 ± 0.32 and 3.43 ± 0.30 per 100 kg liveweight (LW) (P<0.05) for Danish Friesian and Danish Jersey respectively. The botanical composition of the diet was the same for Danish Friesian and Danish Jersey with about half of the diet being grass leaves and the other half clover leaves. It is concluded that Danish Jersey steers have higher herbage intake per 100 kg LW than Danish Friesian steers of the same age, but herbage intake per kg metabolic LW is not different between the two breeds
Ginsparg-Wilson Relation and Ultralocality
It is shown that it is impossible to construct a free theory of fermions on
infinite hypercubic Euclidean lattice in four dimensions that is: (a)
ultralocal, (b) respects symmetries of hypercubic lattice, (c) corresponding
kernel satisfies D gamma5 + gamma5 D = D gamma5 D (Ginsparg-Wilson relation),
(d) describes single species of massless Dirac fermions in the continuum limit.Comment: 4 pages, REVTEX; few minor change
Ecology of Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle
Microsensors, including a recently developed NO3 − biosensor, were applied to measure O2 and NO3 − profiles in marine sediments from the upwelling area off central Chile and to investigate the influence of Thioploca spp. on the sedimentary nitrogen metabolism. The studies were performed in undisturbed sediment cores incubated in a small laboratory flume to simulate the environmental conditions of low O2, high NO3 −, and bottom water current. On addition of NO3 −and NO2 −, Thioploca spp. exhibited positive chemotaxis and stretched out of the sediment into the flume water. In a core densely populated with Thioploca, the penetration depth of NO3 − was only 0.5 mm and a sharp maximum of NO3 − uptake was observed 0.5 mm above the sediment surface. In sediments with only fewThioploca spp., NO3 − was detectable down to a depth of 2 mm and the maximum consumption rates were observed within the sediment. No chemotaxis toward nitrous oxide (N2O) was observed, which is consistent with the observation that Thioploca does not denitrify but reduces intracellular NO3 − to NH4 +. Measurements of the intracellular NO3 − and S0 pools inThioploca filaments from various depths in the sediment gave insights into possible differences in the migration behavior between the different species. Living filaments containing significant amounts of intracellular NO3 − were found to a depth of at least 13 cm, providing final proof for the vertical shuttling of Thioploca spp. and nitrate transport into the sediment
Experimental Demonstration of a Quantum Circuit using Linear Optics Gates
One of the main advantages of an optical approach to quantum computing is the
fact that optical fibers can be used to connect the logic and memory devices to
form useful circuits, in analogy with the wires of a conventional computer.
Here we describe an experimental demonstration of a simple quantum circuit of
that kind in which two probabilistic exclusive-OR (XOR) logic gates were
combined to calculate the parity of three input qubits.Comment: v2 is final PRA versio
Transonic Elastic Model for Wiggly Goto-Nambu String
The hitherto controversial proposition that a ``wiggly" Goto-Nambu cosmic
string can be effectively represented by an elastic string model of exactly
transonic type (with energy density inversely proportional to its tension
) is shown to have a firm mathematical basis.Comment: 8 pages, plain TeX, no figure
Upper limits on the luminosity of the progenitor of type Ia supernova SN2014J
We analysed archival data of Chandra pre-explosion observations of the
position of SN2014J in M82. No X-ray source at this position was detected in
the data, and we calculated upper limits on the luminosities of the progenitor.
These upper limits allow us to firmly rule out an unobscured supersoft X-ray
source progenitor with a photospheric radius comparable to the radius of white
dwarf near the Chandrasekhar mass (~1.38 M_sun) and mass accretion rate in the
interval where stable nuclear burning can occur. However, due to a relatively
large hydrogen column density implied by optical observations of the supernova,
we cannot exclude a supersoft source with lower temperatures, kT < 80 eV. We
find that the supernova is located in the centre of a large structure of soft
diffuse emission, about 200 pc across. The mass, ~3x10^4 M_sun and short
cooling time of the gas, tau_cool ~ 8 Myrs, suggest that it is a
supernova-inflated super-bubble, associated with the region of recent star
formation. If SN2014J is indeed located inside the bubble, it likely belongs to
the prompt population of type Ia supernovae, with a delay time as short as ~ 50
Myrs. Finally, we analysed the one existing post-supernova Chandra observation
and placed upper limit of ~ (1-2) 10^37 erg/s on the X-ray luminosity of the
supernova itself.Comment: 8 pages, 6 figure
Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals
We consider the classical magnetoresistance of a Weyl metal in which the
electron Fermi surface possess nonzero fluxes of the Berry curvature. Such a
system may exhibit large negative magnetoresistance with unusual anisotropy as
a function of the angle between the electric and magnetic fields. In this case
the system can support a new type of plasma waves. These phenomena are
consequences of chiral anomaly in electron transport theory.Comment: 4 pages, 2 figure
Why Nature has made a choice of one time and three space coordinates?
We propose a possible answer to one of the most exciting open questions in
physics and cosmology, that is the question why we seem to experience four-
dimensional space-time with three ordinary and one time dimensions. We have
known for more than 70 years that (elementary) particles have spin degrees of
freedom, we also know that besides spin they also have charge degrees of
freedom, both degrees of freedom in addition to the position and momentum
degrees of freedom. We may call these ''internal degrees of freedom '' the
''internal space'' and we can think of all the different particles, like quarks
and leptons, as being different internal states of the same particle. The
question then naturally arises: Is the choice of the Minkowski metric and the
four-dimensional space-time influenced by the ''internal space''?
Making assumptions (such as particles being in first approximation massless)
about the equations of motion, we argue for restrictions on the number of space
and time dimensions. (Actually the Standard model predicts and experiments
confirm that elementary particles are massless until interactions switch on
masses.)
Accepting our explanation of the space-time signature and the number of
dimensions would be a point supporting (further) the importance of the
''internal space''.Comment: 13 pages, LaTe
Exploring non-adiabatic approximations to the exchange-correlation functional of TDDFT
A decomposition of the exact exchange-correlation potential of time-dependent density functional theory into an interaction component and a kinetic component offers a new starting point for non-adiabatic approximations. The components are expressed in terms of the exchange-correlation hole and the difference between the one-body density matrix of the interacting and Kohn-Sham systems, which must be approximated in terms of quantities accessible from the Kohn-Sham evolution. We explore several preliminary approximations, evaluate their fulfillment of known exact conditions, and test their performance on simple model systems for which available exact solutions indicate the significance of going beyond the adiabatic approximation.Fil: Fuks, Johanna Ildemar. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de FÃsica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FÃsica de Buenos Aires; ArgentinaFil: Lacombe, Lionel. University of New York; Estados UnidosFil: Nielsen, Søren E. B.. Max Planck Institute for the Structure and Dynamics of Matter; Alemania. Center for Free-Electron Laser Science; AlemaniaFil: Maitra, Neepa T.. University of New York; Estados Unido
- …