18,926 research outputs found

    Electronic properties of Si/Si1–x–yGexCy heterojunctions

    Get PDF
    We have used admittance spectroscopy and deep-level transient spectroscopy to characterize electronic properties of Si/Si1–x–yGexCy heterostructures. Band offsets measured by admittance spectroscopy for compressively strained Si/Si1–x–yGexCy heterojunctions indicate that incorporation of C into Si1–x–yGexCy lowers both the valence- and conduction-band edges compared to those in Si1–xGex by an average of 107 ± 6 meV/% C and 75 ± 6 meV/% C, respectively. Combining these measurements indicates that the band alignment is type I for the compositions we have studied, and that these results are consistent with previously reported results on the energy band gap of Si1–x–yGexCy and with measurements of conduction band offsets in Si/Si1–yCy heterojunctions. Several electron traps were observed using deep-level transient spectroscopy on two n-type heterostructures. Despite the presence of a significant amount of nonsubstitutional C (0.29–1.6 at. %), none of the peaks appear attributable to previously reported interstitial C levels. Possible sources for these levels are discussed

    Study of an engine flow diverter system for a large scale ejector powered aircraft model

    Get PDF
    Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed

    Deep-level transient spectroscopy of Si/Si1–x–yGexCy heterostructures

    Get PDF
    Deep-level transient spectroscopy was used to measure the activation energies of deep levels in n-type Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Four deep levels have been observed at various activation energies ranging from 231 to 405 meV below the conduction band. The largest deep-level concentration observed was in the deepest level and was found to be approximately 2 × 10^15 cm^–3. Although a large amount of nonsubstitutional C was present in the alloy layers (1–2 at. %), no deep levels were observed at any energy levels that, to the best of our knowledge, have been previously attributed to interstitial C

    Band offsets in Si/Si1–x–yGexCy heterojunctions measured by admittance spectroscopy

    Get PDF
    We have used admittance spectroscopy to measure conduction-band and valence-band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Valence-band offsets measured for Si/Si1–xGex heterojunctions were in excellent agreement with previously reported values. Incorporation of C into Si1–x–yGexCy lowers the valence- and conduction-band-edge energies compared to those in Si1–xGex with the same Ge concentration. Comparison of our measured band offsets with previously reported measurements of energy band gaps in Si1–x–yGexCy and Si1–yCy alloy layers indicate that the band alignment is Type I for the compositions we have studied and that our measured band offsets are in quantitative agreement with these previously reported results

    Measurement of band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterojunctions

    Get PDF
    Realization of group IV heterostructure devices requires the accurate measurement of the energy band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterojunctions. Using admittance spectroscopy, we have measured valence-band offsets in Si/Si1–xGex heterostructures and conduction-band and valence-band offsets in Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Measured Si/Si1–xGex valence-band offsets were in excellent agreement with previously reported values. For Si/Si1–x–yGexCy our measurements yielded a conduction-band offset of 100 ± 11 meV for a n-type Si/Si0.82Ge0.169C0.011 heterojunction and valence-band offsets of 118 ± 12 meV for a p-type Si/Si0.79Ge0.206C0.004 heterojunction and 223 ± 20 meV for a p-type Si/Si0.595Ge0.394C0.011 heterojunction. Comparison of our measured band offsets with previously reported measurements of energy band gaps in Si1–x–yGexCy and Si1–yCy alloy layers indicates that the band alignment is type I for the compositions we have studied and that our measured band offsets are in quantitative agreement with these previously reported results

    Trophic Conditions and Planktonic Processes of Semi-arid Floodplain Lakes Inundated with Environmental Flows

    Get PDF
    Shallow floodplain lakes are critical components of semi-arid floodplain wetland systems. Delivery of environmental flows that aim to sustain ecological processes of semi-arid floodplain wetlands has enhanced inundation of shallow lakes in inland Australia. To maximise environmental flow outcomes to support floodplain productivity and ecosystem functions, environmental managers would benefit from knowing whether semi-arid floodplain lakes function as a sink or source of atmospheric carbon. We investigated abiotic conditions, and rates of planktonic respiration and primary productivity of phytoplankton during summer under environmental flow conditions in three floodplain lakes of the lower Murrumbidgee River, Australia. All lakes showed mesoeutrophic to hypereutrophic characteristics and significant within- and between-lake variability in abiotic conditions, planktonic processes, and associated carbon balance. Nevertheless, the mean net primary productivity of phytoplankton in the lakes (364-1,674 mg C m-2 day-1) were up to about three times greater than in other semi-arid floodplain wetlands of southeast Australia. Therefore, shallow floodplain lakes in semi-arid regions have great potential to function as a sink of atmospheric carbon through planktonic metabolism during summer. A spatial hierarchical framework for lake functional response to inundation is proposed to support decision-making and to maximise the benefits of environmental flow regimes for floodplain lakes
    • …
    corecore