5,111 research outputs found
A direct-sequence spread-spectrum communication system for integrated sensor microsystems
Some of the most important challenges in health-care technologies have been identified to be development of noninvasive systems and miniaturization. In developing the core technologies, progress is required in pushing the limits of miniaturization, minimizing the costs and power consumption of microsystems components, developing mobile/wireless communication infrastructures and computing technologies that are reliable. The implementation of such miniaturized systems has become feasible by the advent of system-on-chip technology, which enables us to integrate most of the components of a system on to a single chip. One of the most important tasks in such a system is to convey information reliably on a multiple-access-based environment. When considering the design of telecommunication system for such a network, the receiver is the key performance critical block. The paper describes the application environment, the choice of the communication protocol, the implementation of the transmitter and receiver circuitry, and research work carried out on studying the impact of input data characteristics and internal data path complexity on area and power performance of the receiver. We provide results using a test data recorded from a pH sensor. The results demonstrate satisfying functionality, area, and power constraints even when a degree of programmability is incorporated in the system
Modeling interestingness of streaming association rules as a benefit-maximizing classification problem
Cataloged from PDF version of article.In a typical application of association rule learning from market basket data, a set of transactions for a fixed period of time is used as input to rule learning algorithms. For example, the well-known Apriori algorithm can be applied to learn a set of association rules from such a transaction set. However, learning association rules from a set of transactions is not a one time only process. For example, a market manager may perform the association rule learning process once every month over the set of transactions collected through the last month. For this reason, we will consider the problem where transaction sets are input to the system as a stream of packages. The sets of transactions may come in varying sizes and in varying periods. Once a set of transactions arrive, the association rule learning algorithm is executed on the last set of transactions, resulting in new association rules. Therefore, the set of association rules learned will accumulate and increase in number over time, making the mining of interesting ones out of this enlarging set of association rules impractical for human experts. We refer to this sequence of rules as "association rule set stream" or "streaming association rules" and the main motivation behind this research is to develop a technique to overcome the interesting rule selection problem. A successful association rule mining system should select and present only the interesting rules to the domain experts. However, definition of interestingness of association rules on a given domain usually differs from one expert to another and also over time for a given expert. This paper proposes a post-processing method to learn a subjective model for the interestingness concept description of the streaming association rules. The uniqueness of the proposed method is its ability to formulate the interestingness issue of association rules as a benefit-maximizing classification problem and obtain a different interestingness model for each user. In this new classification scheme, the determining features are the selective objective interestingness factors related to the interestingness of the association rules, and the target feature is the interestingness label of those rules. The proposed method works incrementally and employs user interactivity at a certain level. It is evaluated on a real market dataset. The results show that the model can successfully select the interesting ones. (C) 2008 Elsevier B.V. All rights reserved
Microscopic resolution broadband dielectric spectroscopy
Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin
Impact of maximum back-EMF limits on the performance characteristics of interior permanent magnet synchronous machines
Interior permanent magnet (IPM) synchronous machines are vulnerable to uncontrolled generator (UCG) faults at high speed that can damage the inverter. One approach to reducing this risk is to impose limits on the maximum machine back-EMF voltage at top speed. This paper presents the results of a comparative design study that clarifies the nature and extent of the penalties imposed on the IPM machine metrics and performance characteristics as a result of imposing progressively tighter values of back-EMF voltage limits. As an alternative to limiting back-EMF and penalizing machine designs, this paper also investigates the effectiveness of the system-side protection approach to the same UCG fault problem.Seok-hee Han, Thomas M. Jahns, Metin Aydin, Mustafa K. Guven, Wen L. Soon
Infrared renormalons and single meson production in proton-proton collisions
In this article, we investigate the contribution of the higher twist Feynman
diagrams to the large- inclusive pion production cross section in
proton-proton collisions and present the general formulae for the higher twist
differential cross sections in the case of the running coupling and frozen
coupling approaches. The structure of infrared renormalon singularities of the
higher twist subprocess cross section and the resummed expression (the Borel
sum) for it are found. We compared the resummed higher twist cross sections
with the ones obtained in the framework of the frozen coupling approximation
and leading twist cross section. We obtain, that ratio for all values of
the transverse momentum of the pion identical equivalent to ratio .
It is shown that the resummed result depends on the choice of the meson wave
functions used in calculation. Phenomenological effects of the obtained results
are discussed.Comment: 28 pages, 13 figure
Permeability evolution during progressive development of deformation bands in porous sandstones
[1] Triaxial deformation experiments were carried out on large (0.1 m) diameter cores of a porous sandstone in order to investigate the evolution of bulk sample permeability as a function of axial strain and effective confining pressure. The log permeability of each sample evolved via three stages: (1) a linear decrease prior to sample failure associated with poroelastic compaction, (2) a transient increase associated with dynamic stress drop, and (3) a systematic quasi-static decrease associated with progressive formation of new deformation bands with increasing inelastic axial strain. A quantitative model for permeability evolution with increasing inelastic axial strain is used to analyze the permeability data in the postfailure stage. The model explicitly accounts for the observed fault zone geometry, allowing the permeability of individual deformation bands to be estimated from measured bulk parameters. In a test of the model for Clashach sandstone, the parameters vary systematically with confining pressure and define a simple constitutive rule for bulk permeability of the sample as a function of inelastic axial strain and effective confining pressure. The parameters may thus be useful in predicting fault permeability and sealing potential as a function of burial depth and faul
Stable propagation of an ordered array of cracks during directional drying
We study the appearance and evolution of an array of parallel cracks in a
thin slab of material that is directionally dried, and show that the cracks
penetrate the material uniformly if the drying front is sufficiently sharp. We
also show that cracks have a tendency to become evenly spaced during the
penetration. The typical distance between cracks is mainly governed by the
typical distance of the pattern at the surface, and it is not modified during
the penetration. Our results agree with recent experimental work, and can be
extended to three dimensions to describe the properties of columnar polygonal
patterns observed in some geological formations.Comment: 8 pages, 4 figures, to appear in PR
- …
