21 research outputs found

    Dizajniranje i vrednovanje bioadhezijskog filma za transdermalnu isporuku propranolol hidroklorida

    Get PDF
    The objective of the study was to develop a suitable transdermal delivery system for propranolol hydrochloride (PPL) via employing chitosan as a film former. Drug concentration uniformity, thickness, moisture uptake capacity and skin bioadhesion of the films were characterized. The effects of chitosan and PPL concentration and different penetration enhancers on the release and permeation profiles from the films were investigated. Skin irritation of the candidate film was evaluated. Chitosan film (PPL 2 mg cm2, chitosan 2 % m/m, cineol 10 %, m/m) was found non-irritant and achieved 88.2 % release after 8 hours in phosphate buffer. Significant high (p < 0.001) permeation of PPL through rat skin was obtained using this film compared to the film without enhancer (about 8 times enhancement factor), making it a promising transdermal delivery system for PPL.Cilj rada bio je razvoj pogodnog transdermalnog sustava na bazi kitozana za isporuku propranolol hidroklorida (PPL). Svim pripravcima ispitana je jednoličnost udjela lijeka, debljina, sposobnost vlaženja i bioadhezivnost na kožu. Ispitivan je i utjecaj kitozana, koncentracije PPL-a i sredstva za povećanje permeacije na oslobađanje i permeacijski profil, te potencijalni iritacijski učinak na kožu. Iz kitozanskog filma (PPL 2 mg cm2, 2 %, m/m, kitozana i 10 %, m/m, cineola), koji nije djelovao iritabilno, postignuto je 88,2 % oslobađanja nakon 8 sati u fosfatnom puferu. S ovim pripravkom postignuta je i vrlo značajna (p < 0,001) permeacija PPL kroz kožu štakora, oko osam puta veća u usporedbi s filmom bez sredstva za povećanje permeacije. Pripravak bi se mogao upotrijebiti za transdermalnu isporuku PPL

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF

    Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction

    No full text
    Thanaporn Amnuaikit, Toon Chusuit, Panithi Raknam, Prapaporn BoonmeDepartment of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, ThailandBackground: Cellulose masks obtained from natural sources such as bacteria are of interest as cosmetic devices for the treatment of dry skin because they not only improve hydration of the skin, but have low toxicity and are biodegradable. The aims of this study were to determine the in vivo effects of a cellulose mask obtained from Acetobacter xylinum on skin characteristics and to evaluate user satisfaction with the product.Methods: Thirty healthy Thai volunteers aged 21&amp;ndash;40 years participated in the study. The volunteers were randomly separated into a control group and an experimental group. For the control group, volunteers were assigned to apply moist towels to the face for 25 minutes. For the experimental group, the volunteers were assigned to apply the masks, ie, translucent patches which could be fitted onto the face for the same period. The following week, the groups were changed over to the alternative treatment. Skin moisture, sebum, elasticity, texture, dullness, and desquamation levels were assessed using a system used for routine skin counseling before applying the trial product and five minutes after its removal. Degree of satisfaction with use of the cellulose mask was investigated using a five-point rating scale.Results: The cellulose mask increased moisture levels in the skin significantly more than moist towels (P &amp;lt; 0.05) after a single application. No obvious effects on other skin characteristics were found. The cellulose mask product rated around 4/5 on the satisfaction rating scale.Conclusions: A single application of the trial cellulose mask enhanced moisture uptake by facial skin. Users also reported being satisfied with the trial product.Keywords: bacterial cellulose, facial mask, skin characteristics, skin hydration, user satisfactio

    Characterization of Natural Rubber Latex Film Containing Various Enhancers

    Get PDF
    AbstractNatural rubber latex (NRL) is often used to prepare the blended films by solution-casting technique. Its film presents interesting physical properties in elasticity and adhesiveness. From the good physical properties of NRL, it can beused to prepare transdermal patches which gain popularity due to several advantages such as convenient application, avoid first-pass metabolism, possibly to attain sustained and constant drug levels. However, the skin serves an excellent barrier against drug permeation due to the rigid lamellar structure of the stratum corneum lipids. Enhancers can improve the partition of drug into the stratum corneum by increasing the thermodynamic activity of the drug in transdermal formulations. The aims of this study were (i) to prepare the blended films from deproteinized NRL (DNRL), hydroxypropylmethyl cellulose (HPMC), dibutyl phthalate (DBP), various enhancers, i.e., fatty acid (oleic acid), ester of fatty acid (isopropyl palmitate; IPP), fatty alcohol (propylene glycol; PG), hydrocarbon (olive oil), and terpene (menthol), and (ii) to study the physical and mechanical properties of the obtained films. The results showed that DNRL could be compatible with all enhancers. Hence, the blended films were characterized for strength (ultimate tensile strength; UTS), elasticity (elongation at break), and adhesiveness (peel strength and tack adhesive). It was found that these characteristics depended on type and concentration of incorporated enhancers

    Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study

    Get PDF
    Bacterial cellulose (BC) is a highly pure form of cellulose, produced in the form of a swollen membrane by several bacteria that demonstrated to be able to modulate the skin release of model drugs. In the present study, the skin irritation potential of BC was evaluated in human subjects. BC membranes with and without glycerin (acting as plasticizer) were tested. No significant differences were observed for transepidermal water loss (TEWL) measurements in comparison with negative control, 2 and 24 h after patch removal, which is an indicator of an absence of barrier disruption. Similar results were found for erythema. Clinical scores were zero at both times for all volunteers, with the exception of five volunteers that exhibited weak reactions. BC with glycerin provided a skin moisturizing effect statistically higher than the negative control (p = 0.044), which was not observed for BC alone. The good skin tolerance found after a single application under occlusion reinforces the putative interest of BC membranes as supports for drug topical delivery. Besides modifying the mechanical properties, the inclusion of glycerin results in a skin moisturizing effect which could be clinically relevant for the treatment for skin diseases characterized by dryness, such as psoriasis and atopic dermatitis. (C) 2013 Elsevier B.V. All rights reserved
    corecore