7,447 research outputs found

    Magnon Broadening Effect by Magnon-Phonon Interaction in Colossal Magnetoresistance Manganites

    Full text link
    In order to study the magnetic excitation behaviors in colossal magnetoresistance manganites, a magnon-phonon interacting system is investigated. Sudden broadening of magnon linewidth is obtained when a magnon branch crosses over an optical phonon branch. Onset of the broadening is approximately determined by the magnon density of states. Anomalous magnon damping at the brillouine zone boundary observed in low Curie temperature manganites is explained.Comment: 4 pages incl. 4 figs. New e-mail: [email protected]

    Exact time correlation functions for N classical Heisenberg spins in the `squashed' equivalent neighbor model

    Full text link
    We present exact integral representations of the time-dependent spin-spin correlation functions for the classical Heisenberg N-spin `squashed' equivalent neighbor model, in which one spin is coupled via the Heisenberg exchange interaction with strength J1J_1 to the other N-1 spins, each of which is coupled via the Heisenberg exchange coupling with strength J2J_2 to the remaining N-2 spins. At low temperature T we find that the N spins oscillate in four modes, one of which is a central peak for a semi-infinite range of the values of the exchange coupling ratio. For the N=4 case of four spins on a squashed tetrahedron, detailed numerical evaluations of these results are presented. As TT\to\infty, we calculate exactly the long-time asymptotic behavior of the correlation functions for arbitrary N, and compare our results with those obtained for three spins on an isosceles triangle.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System

    Full text link
    We study the one-dimensional Cahn-Hilliard equation with an additional driving term representing, say, the effect of gravity. We find that the driving field EE has an asymmetric effect on the solution for a single stationary domain wall (or `kink'), the direction of the field determining whether the analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The behaviour of a bubble is dependent on the relative sizes of a characteristic length scale E1E^{-1}, where EE is the driving field, and the separation, LL, of the interfaces. For EL1EL \gg 1 the velocities of the interfaces are negligible, while in the opposite limit a travelling-wave solution is found with a velocity vE/Lv \propto E/L. For this latter case (EL1EL \ll 1) a set of reduced equations, describing the evolution of the domain lengths, is obtained for a system with a large number of interfaces, and implies a characteristic length scale growing as (Et)1/2(Et)^{1/2}. Numerical results for the domain-size distribution and structure factor confirm this behavior, and show that the system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.

    3D Spinodal Decomposition in the Inertial Regime

    Full text link
    We simulate late-stage coarsening of a 3D symmetric binary fluid using a lattice Boltzmann method. With reduced lengths and times l and t respectively (scales set by viscosity, density and surface tension) our data sets cover 1 < l 100 we find clear evidence of Furukawa's inertial scaling (l ~ t^{2/3}), although the crossover from the viscous regime (l ~ t) is very broad. Though it cannot be ruled out, we find no indication that Re is self-limiting (l ~ t^{1/2}) as proposed by M. Grant and K. R. Elder [Phys. Rev. Lett. 82, 14 (1999)].Comment: 4 pages, 3 eps figures, RevTex, minor changes to bring in line with published version. Mobility values added to Table

    Competition between unconventional superconductivity and incommensurate antiferromagnetic order in CeRh1-xCoxIn5

    Full text link
    Elastic neutron diffraction measurements were performed on the quasi-two dimensional heavy fermion system CeRh1-xCoxIn5, ranging from an incommensurate antiferromagnet for low x to an unconventional superconductor on the Co-rich end of the phase diagram. We found that the superconductivity competes with the incommensurate antiferromagnetic (AFM) order characterized by qI=(1/2, 1/2, delta) with delta=0.298, while it coexists with the commensurate AFM order with qc=(1/2, 1/2, 1/2). This is in sharp contrast to the CeRh1-xIrxIn5 system, where both the commensurate and incommensurate magnetic orders coexist with the superconductivity. These results reveal that particular areas on the Fermi surface nested by qI play an active role in forming the superconducting state in CeCoIn5.Comment: RevTeX4, 4 pages, 4 eps figures; corrected a typo and a referenc

    Temperature and Density Distribution in the Molecular Gas Toward Westerlund 2: Further Evidence for Physical Association

    Full text link
    Furukawa et al. 2009 reported the existence of a large mass of molecular gas associated with the super star cluster Westerlund 2 and the surrounding HII region RCW49, based on a strong morphological correspondence between NANTEN2 12CO(J=2-1) emission and Spitzer IRAC images of the HII region. We here present temperature and density distributions in the associated molecular gas at 3.5 pc resolution, as derived from an LVG analysis of the 12CO(J=2-1), 12CO(J=1-0) and 13CO(J=2-1) transitions. The kinetic temperature is as high as 60-150 K within a projected distance of 5-10 pc from Westerlund 2 and decreases to as low as 10 K away from the cluster. The high temperature provides robust verification that the molecular gas is indeed physically associated with the HII region, supporting Furukawa et al.'s conclusion. The derived temperature is also roughly consistent with theoretical calculations of photo dissociation regions (PDRs), while the low spatial resolution of the present study does not warrant a more detailed comparison with PDR models. We suggest that the molecular clouds presented here will serve as an ideal laboratory to test theories on PDRs in future higher resolution studies.Comment: 23 pages, 5 figures, accepted for publication in Ap

    Colossal magnetoresistance and quenched disorder in manganese oxides

    Full text link
    We give an overview on several recent topics of colossal magnetoresistive manganites in both experiments and theories, focusing on the effect of quenched disorder. The disorder is intrinsically involved since the compounds are solid solutions, and its importance has been pointed out in several experiments of transport and magnetic properties. Recent progress in the experimental control of the strength of disorder is also reviewed. Theoretically, the effect of the disorder has been explored within the framework of the double-exchange mechanism. Several efforts to understand the phase diagram and the electronic properties are reviewed. We also briefly discuss a recent topic on the effect of disorder on competing phases and the origin of colossal magnetoresistance.Comment: 5 pages, 4 figures, proceedings submitted to SPQS200
    corecore