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Abstract

This paper discusses the pover series solution of a system of algebraic
equations which is computed by the multivariate symbolic Newton’s method.
Applying Newton's method naively, we obtain a power series solution the
coefficients of which are large rational functioh of the initial approximation.
An algorithm is given to reduce the solution to the normal form by usingkgerner

basis method.
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1. Iﬁtroduction

Newton’'s method has been introduced into computer algebra by
Sieveking(1972), who proposed a fast algorithm for division. A number of useful
algorithms based on Newton’s method have been proposed since then : to compute
power series solution of algebraic equations by Lipson(1976), Kung &
Traub(1978) ; as a generalization of Hensel construction in univariate case by
Yun(1976a) (1976b), in multivariate case by Zippel (1981).

In this paper, the calculation of power series solution of a system of
multivariate algebraic equations is discussed. In preparation, the univariate
version of symbolic Newton’s method is reviewed. (See Lipson(1976) or Kung &

Traub(1978) for mathematical formulation.)

Algorithm 1 [Symbolic Newton iteration : univariate case]
Given an equation f(x,e) =0, feQ[x,e], with initial appfoximation
=29, s.t. fx©@,0)=0 and %{(xw),O%#O, calculate the power series expansion

of the solution at £=0,

41

x = E%ngj , ap = 2@ | ~ a.1)
p

method. Apply the iteration formula

*)
ke = g0 fxoe) k=0,1, - - - . (1.2)
9 ,e)
X

Then,

2k-1 .
2® = Y a;ef
i=0

is an 0(8?) approximation to the solution (1.1D).

Algorithm 1 cannot be applied directly to the problem where %%(xw),0)=0 R
but Kung & Traub(1978) has,shqwn'that such a "general” problem can be reduced to

a "regular” problem vwhere %{(xw),O%#O.' Furthermore they rproposed purely
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symbolic computation using the minimal polynomial of the initial approﬁimatibn
x© ; In this paper, wé apply the purely symbolic computation to a system of
multivariate equations, restricting ourselves to regular problems, . since genéral
problems can be treated simiiarly to univariate case by using the branéhing

theory( Vainberg & Trenogin(1974) ). Our probiem is formulated as follows.

Problem

Given a system of n equations with n+1 variables,

Fr(xi, - - -,xn,e} =0
...... ... .. | (1.3)
Fa(Xts + -+ 520s8) =0
where f;(1=i=n) € Q[x1,* * * ,Xs €]
and a set of initial approximations xF», e xl0 satisfying
fiaf®, - - ,2®,0) = 0
........... 4 (1.4)
Fulxf?, - 2®,0) =0,

solve this system at £=0 by symbolic Newton’s method, and get the power series

expansions,
o= Yaet ,  ap = xf®
i=0
..... (1.5)
Tn = 200i€ , G = 20
S .

Here, construct the algorithm by which the expansion coefficients 'a;; are

represented in the "simplest” forms.

Thfough Newton's method, a;; grow into large rational functions of

0, -,xﬁ”. Therefofe, they must be reduced to as simple forms as possible"in
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each step of the iteration so that the computation may proceed efficiently.

For the regularity of the problem, we set a restriection.

Assumption 1
Fq.(1.4) has finitely many solutions and (xf¥, - - -,z ,0) is a simple zero
of it.
O

The solution (1.5) is a local parametric representation of the systém (1.8)
showing the behavior of the system near 8:0. ~

In the next section we formulate the multivariate symbolic Newton's method,
and vwe discuss the reduction of a;; by using the relation between xf®, . o0
in section 3. In section 4 we consider the rationalization of denominator. The

whole algorithm is given in section 5, with an example in section 8.

Computational efficiency is discussed in section 7.

2. Newton’'s method for a system of multivariate equations
The iteration formula is analogous tovthe numerical Newton's method. (See,
e.g. Traub(1964).) The proof of convergence is the straightforward extension of

the univariate case.

Algorithm 2 [Symbolic‘Newton’s method : multivariate case]

The iteration formula for Eq.(1.3) is

where,
X £
’ ] af; . .
x =1 - , F= . , F=[ =1 (Jacobian matrix)
. . an
Tn Jn

Then s
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ay;
21
x® = Y aiel , aq; =
i=0
Qnj

is an O(ezk) approximation to the solution (1.5).

Remark

If F”‘(x“o,s) does not exist, then the iteration cannot be performed.
However, Assumption 1 guarantees that detF(x«D,O)aéO, which is the constant term
of detF(xw),e) in Qx@)[e] . Therefore, detF(x&),ey#O for every k is

guaranteed.

3. Relation between the initial appfoximations

In this section, we discuss the relation between xz{¥,--.,z{® in (1.4),
considering the following zero-dimensional ideal

I= (fixts > - =%0,0), - -« fa(Xrs - - +520,0)) C Qxys + - - 5 20] 3.1)

by using Grobner basis method. We follow Buchberger (1985) for basic notation and
definitions, and we assume that all Grobner bases which appear in this paper are
lexicographic and reduced.

Recently Gianni et al.(1986) showed the property of lexicographic Grobner
bases of prime ideals, and proposed an algorithm for the primary decompoéition

of zero-dimensional ideals.

Proposition 3.1
Let p be a prime ideal in Q[xi,x2,- - -,x,]. For almost all linear
coordinate transformations, the Grobner basis of p with respect to the new

coordinates z1,2z2, - - - ,Z, is of the form

{ z — o1 (z) » z2 = ¢2(z8) 5t Zet — Pn1(Z) s PnlZa) b 3.2)
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for some @;(zn) € Qza].

This is easy to see from Proposition 7.1 of Gianni et al.(1988) together

with the definition of reduced Grobner bases.

" Algorithm 3.1 [Primary decomposition]

Let I C Q[x1,x2,+ - - ,Xn] be a zero dimensional ideal. Under almost all
coordinate transformations, if I N Qlzl = (@) and: g is factored to
g?l g§2 ..... gs then

I=T,di) " T, g N---Nn A, g&) 3.3)

is the irredundant primary decomposition of I.

Considering the primary decomposition of I (3.1) and the -multiplicity of

(xfo) y oo ,x,ﬁo)), we get the following proposition. .

Proposition 3.2

Given fi,+ - +,fn € Qxt,+ -+ <,x,] and a = (g, - - - ,05) € C" such that

fi(a) = 0, dI=1=n), detF(a) + O,

we compute the primary decomposition

I=(fi,--5fa) =N+ +-Nqs . - (3.4)
Then, q; is a prime ideal if a € V(q) .

Proof

Algorithm 3.1 gives a univariate polynomial g such that (g) =1 N Q[x,]
which is factored as g = gft- - - - - ., Welet qq = T, gf), a € Vig1). a is
of multiplicity 1 from detF(a) #+ 0, and ¢g; is irreducible over Q, therefore,

every algebraically conjugate‘ element f of‘_ a satisfies the condition
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detF(B) #+ 0. Hence every conjugate of a is of multiplicity 1. Since »/q12q1

wve get
@i, - - - xl/an)/ War/a) = Qlar, - - - xal/A/a1

We have
dimg(Qlx1s -« +»xal/a/a1) = #V(\/q1) with multiplicity,
dimg(Q[x1s - - +,xa]/qr) = #V(qy) with multiplicity.

By Proposition 3.1, we see that every element of V(»/qi) has the multiplicity 1.
Since any two elements of V(q;) are mutually conjugate, every element of V(qi)
is of multiblicity 1. Hence ﬁV(N/af) = #V(q;) even if we count multiplicity.
Therefore,

dimg(Q[x1, - + - xal/A/a1) = dimg( Q[lb < xd/a)
Consequently, we obtain A/qi = q . ‘ o

Q.E.D.

The propositions and the algorithm above shov that a simple zero
@f®, - - - ,2{9) of q in (8.4) satisfy the relation

{2 @™ =0, 24 - @) =0, auz”) =0} (3.5

for some ¢j(x§”) € Q[xgnj. This relation is obtained by computing the Grobner

bases of q.

Algorithm 3.2 [Computation of the relation of the form (3.5)]
% input :@ polynomials {fi, - « «,fa} in Q[xy, - - - ,xn,€] at =0 ;
% assumption : I=(f(,- - «,fn) at €=0 is zero-dimensional. ;
% output : the relation of the form (3.B) ;
(i) I = giNgeM- - -Ngs. % primary decomposition by Algorithm 3.1;
(i) Select a simple zero (xp),-- -,xﬁ”) and q; to which the zero belongs.

(ii) Return the Grobner basis of q;.

Proof
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Proposition 3.2 shows that ¢q; is prime if the zero (Ifm, <)y s
simple. Therefore, the Grobner basis of q; takes on the form (3.2) according to

Proposition 3.1.

Q.E.D.

0) 0

Using the relation (3.5), variables z{V; . - - ,2{% are eliminated from Qi

€ Q(x#”, .. -,xﬁ”) and a;; are represented by only xém , 1.e. a{jeQ(xS”) .

4, Rationalization of denominator

Here we let b;; < Q[x#”] be the denominator of a;j. Considering that
¢n(x§») in (38.5) is the minimal polynomial(of xﬁ” » 1/b;; 1is computed by the
extended Euclidean‘Algorithm (Loos(1982)j as follows. o

Since the GCD of b;; and ¢, is 1, there exist polynomials A,B € Q[x,] such
that

A-bj; + B-gp = 1.

That 1is, 1/b;j; = A mod ¢,. Hence, a;; € Q(x§m) is represented as a polynomial

of x§® through @n(x#”).

5. The whole algorithm and conclusion

The algorithm for the solution of the Problem is cdmpleted’asrfollows.

Algorithm 5 [Solution of the Problem]

(i) Apply Algorithm 3.2 and selecf the prim ideal to which the initiall
approximation xfm, .- -,xﬁn belongs, and compute the relation (3.5) by
using a lexicographic Grobner basis. | |

(ii) Iterate the following steps for k=0,1,2,--- until the power series
solution is obtained to the desired order.

(ii)—(1) Apply the iteration formula (2.1).
(ii)—(2) Reduce the coefficients a;; with the relation (3.5), representing

them as polynomials by using the extended Euclidean algorithm.

*x 8 x



48
As the conclusion of the result of Algorithm 5, the following can be shown.
(1) For all the solutions (x{o) y oo ,xéo)) at £=0, which are zeros of a certain
prim ideal, the common expression is obtained.
(I) Even if the numeric solution (xfo) y oo ,x,(,o)) cannot be computed exactly,

the symbolic expression of power series expansion is exactly correct.

6. Example

Suppose that the system of equations,

I

B+ a5 -2-e=0

1l

{fl (x1,22,€)
f2@i22,6) = — 2t + 22 — € =0

is given. We apply Algorithm 5 to this system.

(i) The ideal I = (fi(x1,x2,0), f2(x1,x2,0)) is decomposed as follovs.

I=(x -1, x2-1NE +1,x+1)

ﬂ(:rl—%x% +:—23x2 ,x§—51‘§+8)

Here, we select the third prime ideal. Since each basis is already a Grobner

basis, if we let the initial approximations be x{?,x{® , the relation between

them are
2 — L3 4 S0 g (6.1)
2 2 ’ o
0 — 52892 1 8=-0 . 3 (6.2)
Note that (6.2) is the minimal polynomial of x50 .
(i) k=0
(ii)—(1) The iteration formula (2.1) is as follows.
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2l AxfO3pf) 4 o2 4 202 L oo 4 (- 2xd) + 1)e
2T+ 2P
(6.3)
e - = + 3ef0af? 4 eV + (3P + 2)e
- K 20
BxfYxf) + 2
The first iteration gives
xfh = 4232 + 2fV2 4+ 202 4+ 2 + (- 2P + 1)e
6202280 + 220
(6.4)
2D = = 2 + 30202 + 62fY + (BfV + 2)e
P+ 2 ~
()= @) Using the relations (8.1) and (6.2), and reducing the numerators
and denominators of (6.4) respectively, we obtain
zf) = = 4 292 — 4 + @0 - 1)e
55?3~ 90
(6.5)

y o 120893 — 44200 4+ (@23 - %P + e
\'I,‘é = 02 ; .
120592 — 44 ,

Applying the extended Euclidean algorithm to the denominators of (6.5) and

(6.2), we obtain

(038 0y-1= _ B (3 , 25 (0

(@fP3-gxt)l= - S5 + B
‘ o2 11 _o\v-1— _ 9 (@2 , 3

<(x§ 5 xé = 28xé + =

A mod xéo)“ - 5x§°)2 + 8

The reduction of (6.5) with (6.6) and (6.2) gives

H - 1.3 _ 3 (0 1 o3 _ 5 w2 _ 5 o , 4
xf (zxé zxé )+ (zsxé 28Ié | 56&75 + 2)e

xf)

o 4 - S - Bz 8o 4 Ly

* 10 %
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This is an O(e?) approximation to the solution.
(i) k =

Only the result of the second iteration is shown here.

(D = <lx50>3 - §x§0>> + <_1_x§o>3 _ éxémz - _B_Iém + 4ye

7
03 4 0)2 0 _ £2
gt ¢ gt v Basdt
o 03 _ 5035 32 _ 3215 0) 1895
t (rep” - 1-756163‘7é 878083“5 * 21952>£ |
3 (6.8)

) = =P + (- —%xﬁom - éxéo)z + —Z%xéQ + %,)5

_ 38 3 02 0) _
+ ( 1558x§ + 1568 ﬁ Tgééxé ———)s
1349 o3 2531 _(0)2 0) 255 3
' + (ot TEe16Y 2744Ié 51065

This is an O(e*) approximation to the solution. At this iteration step, the
rational expression of £ is transformed into the truncated power series of £, by

calculating the expansion of the reciprocal of the denominator polynomial.

7. Note on the computational efficiency

When we apply the iteration formula (2.1), the convergence is second order,
but the computation of F!(x™,e) in each iteration step is time consuming. If'
ve use F'(x®,0) in place of F!(z®¥,¢e), which is the constant term uof the
latter for every k, the convergence is first order,’that is, % is an O(s(m)
approximation. However, the computational complexity in each step becomes smail.
When the desired order of the power series solution is not high, this modified

method may be more efficient.
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