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Abstract

This paper discusses the power series solution of a system of algebraic

equations which is computed by the multivariate symbolic Newton’s method.

Applying Newton’s method naively, we obtain a power series solution the

coefficients of which are large rational function of the initial approximation.

An algorithm is given to reduce the solution to the normal form by using Grobner

basis method.
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1. Introduction 41

Newton’s method has been introduced into computer algebra by

Sieveking(1972), who proposed a fast algorithm for division. A number of useful

algorithms based on Newton’s method have been proposed since then : to compute

power ser ies solution of algebraic equations by Lipson (1976), Kung &

Traub $(1978)$ ; as a generalization of Hensel construction in univariate case by

Yun $(1976a)(1976b)$ , in multivariate case by Zippel (1981).

In this paper, the calculation of power series solution of a system of

multivariate algebraic equations is discussed. In preparation, the univariate

version of symbolic Nelrton s method is reviewed. (See Lipson(1976) or Kung &

Traub(1978) for mathematical formulation. )

Al orithm 1 [Symbolic Newton iteration : univariate case]

Given an equation $f(x,\epsilon)=0$ , $f\epsilon Q[x, \epsilon]$ , with initial approximation

$x=x^{(0)},$ $s.t$ . $f(x^{(0)},0)=0$ and $\frac{\partial f}{\partial x}(x^{(0)},0)\neq 0$ , calculate the power series expansion

of the solution at $\epsilon=0$ ,

$x= \sum_{j=0}^{\infty}a_{j}\epsilon^{j}$ , $\mathfrak{a}_{0}=x^{(0)}$ . (1. 1)

method. Apply the iteration formula

$x^{(k+1)}=x^{(k)}- \frac{f(x^{(k)},\epsilon)}{\frac{\partial j}{\partial x}(x^{(k)},\epsilon)}$ $k=0,1$ , (1.2)

Then,

$x^{(k)}= \sum_{j=0}^{2^{k}-1}a_{j}\epsilon^{j}$

is an $0(\epsilon^{2^{k}})$ approximation to the solution (1. 1).

\square

Algorithm 1 cannot be applied directly to the problem where $\frac{\partial j}{8x}$ $(x^{(0)} ,0)=0$ ,

but Kung &Traub(1978) has shown that such a “general“ problem can be reduced to

a “ regular“ $pr$oblem where $\frac{a;}{\partial x}(x^{(0)},0)\neq 0$ . Furthermore they proposed purely
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symbolic computation using the minimal polynomial of the initial approximation

$x^{(0)}$ . In this paper, we apply the purely symbolic computation to a system of

multivariate equations, restricting ourselves to regular problems, ‘ since general

problems can be treated similarly to univariate case by using the branching

theory ( Vainberg &Trenogin (1974) ). Our problem is formulated as follows.

Problem

Given a system of $n$ equations with $n+1$ variables,

$\{\begin{array}{l}f_{1}(x_{1},\cdots x_{n},\epsilon)=0.\cdot \cdot \cdot \cdot \cdots\cdot\cdot f_{n}(x_{1},\cdots x_{n},\epsilon)=0\end{array}$ (1.3)

where $f_{i}(1\leqq i\leqq \mathfrak{n})$ $\in Q[x_{1}, \cdot\cdot. , x_{n}, \epsilon]$

and a set of initial approximations $x\}^{0)}$ , , $x_{r\iota}^{(0)}$ satisfying

$\{\begin{array}{l}f_{1}xf^{0)},\cdot x_{n}^{(0)}0=0 \cdot \cdot \cdots \cdot\cdot f_{n}x\}^{0)},\cdot x_{n}^{(0)}0=0’\end{array}$ (1.4)

solve this system at $\epsilon=0$ by symbolic Newton’s method, and get the power series

expansions,

$\{\begin{array}{l}X\downarrow=\sum_{j=0}\alpha_{1j}\epsilon^{j}\ldots\cdot\cdot x_{n}=\Sigma \mathfrak{a}_{nj}\epsilon^{j}\infty\end{array}$

,

$\mathfrak{a}_{10}\mathfrak{a}_{n0}==xf^{0)}x_{n}^{(0)}$ (1. 5)

$j=0$

Here, construct the al orithm by which the expansion coefficients $\mathfrak{a}_{ij}$ are

represented in the “simplest“ forms.

コ

Through Newton $s$ method, $a_{ij}$ grow into large rational functions of

$xI^{0)}$ , , $x_{n}^{(0)}$ . Therefore, they must be reduced to as simple forms as possible in



each step of the iteration so that the computation may proceed efficiently.
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For the regularity of the problem, we set a restriction.

Msum $tRn1$

Eq. (1.4) has finitely many solutions and $(xf^{0)}, \cdot. . x_{n}^{(0)},0)$ is a simple zero

of it.

\square

The solution (1.5) is a local parametric $r$ep$r$esentation of the system (1.3)

showing the behavior of the system near $\epsilon=0$ .
In the next section we formulate the multivariate symbolic Newton $s$ method,

and we discuss the reduction of $a_{ij}$ by using the relation between $x1^{0)}$ , $\cdot$ . . , $x_{\mathfrak{n}}^{(0)}$

in section 3. In section 4 we consider the rationalization of denominator. The

whole algorithm is given in section 5, with an example in section 6.

Computational efficiency is discussed in section 7.

2. Newton $s$ method for a system of multivariate equations

The iteration formula is analogous to the numerical Newton’s method. (See,

e.g. Traub(1964).) The proof of convergence is the straightforward extension of

the univariate case.

Algorithm 2 [Symbolic Newton $s$ method : multivariate case]

The iteration formula for Eq. (1.3) is

$x^{(k+I)}=x^{(k)}-F^{-1}(x^{(k)},\epsilon)f(x^{(k)}, \epsilon)$ , (2. 1)

where,

$x=\{\begin{array}{l}X\downarrow x_{n}\end{array}\}$ $f=\{\begin{array}{l}f_{1}\vdots f_{\mathfrak{n}}\end{array}\}$

$F=[. \frac{\partial f_{\mathfrak{i}}}{\partial x_{j}} ]$

(Jacobian matrix) .

Then,
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$x^{(k)}= \sum_{j=0}^{2^{k}-1}a_{j}\epsilon^{j}$ , $a_{j}=\{\begin{array}{l}\mathfrak{a}_{1j}\vdots\mathfrak{a}_{nj}\end{array}\}$

is an $o(\epsilon^{2^{k}})$ approximation to the solution (1.5).

口

Remark

If $\Gamma^{1}(x^{(k)},\epsilon)$ does not exist, then the iteration cannot be performed.

However, Assumption 1 guarantees that $\det F(x^{(0)},0)\neq 0$ , which is the constant term

of $\det F(x^{(l\sigma)},\epsilon)$ in $Q(x^{(0)})[\epsilon]$ . Therefore, $\det F(x^{(k)}, \epsilon)\neq 0$ for every $k$ is

guaranteed.

口

3. Relation between the initial approximations

In this section, we discuss the relation between $xf^{0)},$ $\cdot\cdot$ . , $x_{n}^{(0)}$ in (1.4),

cons,idering the following zero-dimensional ideal

$I=$ $(f[ (x_{1}, . . x_{n},0), \cdots f_{n}(x_{1}, \cdot . . x_{n},0))\subset Q[x_{1}, \cdots x_{n}]$ (3. 1)

by using Grobner basis method. We follow Buchberger(1985) for basic notation and

definitions, and we assume that all Grobner bases which appear in this paper are

lexicographic and reduced.

Recently Gianni et al. (1986) $s$howed the property of lexicographic Grbbner

bases of prime ideals, and proposed an algorithm for the primary decomposition

of zero-dimensional ideals.

Prooosition 3.1

Let $p$ be a prime ideal in $Q[x_{1},x_{2}, , x_{n}]$ . For almost all linear

coordinate transformations, the Grobner basis of $p$ with respect to the new

coordinates $z_{1},z_{2}$ , , $z_{n}$ is of the form

$\{z_{1}-\varphi 1(z_{n}) , z_{2}-\varphi_{2}(z_{n}) , \cdot. , Z_{n-}\downarrow-\varphi_{n}-\iota(z_{r\iota}) , \varphi_{n}(z_{n})\}$ , (33.2)



for some $\varphi_{j}(z_{r\iota})$ $\in Q[z_{\gamma\iota}]$ . 45

口

This is easy to see from Proposition 7. 1 of Gianni $et$ a Z. (1986) together

with the definition of reduced Grobner bases.

Al orithm 3.1 [Primary decomposition]

Let $I\subseteq Q[x_{1},x_{2}, , x_{\mathfrak{n}}]$ be a zero dimensional ideal. Under almost all

coordinate transformations, if $I\cap Q[z_{n}]=(g)$ and $g$ is factored to

$g7^{I}\cdot g_{\triangle}^{82}$ . . $ggs$ then

$I=$ (I , 97]) $\cap$ (I ,-g2) $\cap\cdots\cap$ (I , $g_{s}^{e_{s}}$ ) (3.3)

is the irredundant primary decomposition of $I$ .
ロ

Considering the primary decomposition of $I(3.1)$ and the multiplicity of

$(xl^{0)}, \cdot. , x_{n}^{(0)})$ , we get the following proposition.

$Pro_{-}oosition3.2$

Given $f[,$ $\cdot\cdot$ , $f_{n}$ $\in$ $Q[x_{1}, \cdot\cdot ,x_{n}]$ and $\alpha=$ $(\alpha_{1}, \cdot \alpha_{n})$ $\epsilon$ C’ such that

$f_{i}(\alpha)=0$ , $(1 \leqq i\leqq n)$ , $\det F(\alpha)\neq 0$ ,

we compute the primary decomposition

$I=(f_{1}, \cdots f_{n})=q_{1}\cap\cdots\cap q_{s}$ . (3.4)

Then, $Q\downarrow$ is a prime ideal if $\alpha\in$ $V(q_{1})$ .
口

$Pr$oof

Algorithm 3.1 gives a univariate polynomial $g$ such that $(g)=I\cap Q[x_{n}]$

which is factored$\cdot$ as $g=\mathscr{J}^{1}$ . . . $g_{s}^{e_{s}}$ . We let $Q\downarrow=$ (I , $\mathscr{J}^{1}$ ), $\alpha\in V(q_{1})$ . $\alpha$ is

of multiplicity 1 from $\det F(\alpha)\neq 0$ , and $g_{1}$ is irreducible over $Q$ , therefore,

every algebraically conjugate element $\beta$ of $\alpha$ satisfies the condition



$g\oint\sim$.
$\det F(\beta)\neq 0$ . Hence every coniugate of $\alpha$ is of multiplicity 1. Since $\sqrt{q_{1}}\supset q_{1}$ ,

we get

$(Q[x_{1}, \ldots x_{n}]/q_{1})/(\sqrt{q_{1}}/q_{1})$ $\cong Q[x_{1}, \cdots x_{n}]/\sqrt{q1}$ .
We have

$\dim_{Q}(Q[x_{1}, , x_{n}]/\sqrt{q_{1}})=\# V(\sqrt{Q1})$ wi th multiplici ty,

$\dim_{Q}(Q[x_{1}, \cdot . . x_{n}]/q_{1})=\# V(q_{1})$ with multiplicity.

By Proposition 3. 1, we see that every element of $V(\sqrt{q_{1}})$ has the multiplicity 1.

Since any two elements of $V(q_{1})$ are mutually conjugate, every element of $V(q1)$

is of multiplicity 1. Hence $!fV(\sqrt{q_{1}})=\# V(q_{1})$ even if we count multiplicity.

Therefore,

$\dim_{Q}$ $(Q[x_{1}, \cdot\cdot , x_{l1}]/\sqrt{Q1})=\dim_{Q}(Q[x_{1}, \cdots x_{n}]/q[)$ .
Consequently, we obtain $\sqrt{Q1}=q_{1}$ .

$\backslash$

Q.E.D.

The propositions and the algorithm above show that a simple zero

$(xi^{0)}, . . . , x_{n}^{(0)})$ of $q$ in (3.4) satisfy the relation

$\{x\}^{0)}-\varphi_{1}(x_{n}^{(0)})=0$ , , $x_{n}^{(\underline{0}}\{-\varphi_{2}(x_{tt}^{(0)})=0 , \varphi_{n}(x_{l1}^{(0)})=0\}$ (3.5)

for some $\varphi_{j}(x_{n}^{(0)})$ $\in Q[x_{1}^{(0)}]$ . This relation is obtained by computing the Grobner

bases of $q$ .

Al orithm 3.2 [Computation of the relation of the form (3.5)]

% input : polynomials $\{f_{1}, \cdot\cdot. ,f_{n}\}$ in $Q[x_{1}, \cdot . . , x_{n}, \epsilon]$ at $\epsilon=0$ ;

% assumption : $I=$ $(f_{1}$ , $\cdot$ . . $f_{n})$ at $\epsilon=0$ is zero-dimensional. ;

% output : the relation of the form (3.5) ;

(i) $I=q_{1}\cap q_{2}\cap$ $\cap q_{s}$ . % prima$ry$ decomposition by Algorithm 3. 1 ;
$(\ddot{u} )$ Select a simple zero $(xt^{0)}$ , $\cdot$ . . $x_{n}^{(0)})$ and $q_{i}$ to which the zero belongs.

(iii) Return the Grobner basis of qi.

口

Proof
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Proposition 3.2 shows that $q_{\mathfrak{i}}$ is $pr$ ime if the zero $(x \int^{0)}, , x_{n}^{(0)})$ is

simple. Therefore, the Grobner basis of $q_{i}$ takes on the form (3.2) according to

proposi tion 3. 1.

Q.E.D.

Using the relation (3.5), variables $xf^{0)},$ $\cdot$ . . , $x_{n}^{(\underline{0}}$ { are eliminated from $\mathfrak{a}_{\mathfrak{i}j}$

$\epsilon$ $Q(xl^{0)}, , x_{\mathfrak{n}}^{(0)})$ and $a_{ij}$ are represented by only $x_{n}^{(0)}$ , $i.e$ . $\mathfrak{c}\iota_{ij}\epsilon Q(x_{t}^{(0)})$ .

4. Rationalization of denominator

Here we let $b_{ij}$ $\in$ $Q[x_{n}^{(0)}]$ be the denominator of $\mathfrak{a}_{ij}$ . Considering that

$\varphi_{n}(x_{n}^{(0)})$ in (3.5) is the minimal polynomial of $x_{n}^{(0)}$ , $1/b_{ij}$ is computed by the

extended Euclidean Algorithm (Loos(1982)) as follows.

Since the GCD of $b_{ij}$ and $\varphi_{n}$ is 1, there exist polynomials $A,\mathcal{B}\in$ $Q[x_{\iota}]$ such

that

$A\cdot b_{\mathfrak{i}j}+B\cdot\varphi_{n}=1$ .
That is, $1/b_{\mathfrak{i}j}\equiv A$ $mod \varphi_{n}$ . Hence, $\mathfrak{a}_{ij}$

$\in Q(x_{n}^{(0)})$ is represented as a polynomial

of $x_{n}^{(0)}$ through $\varphi_{n}(x_{n}^{(0)})$ .

5. The whole algorithm and conclusion

The algorithm for the solution of the Problem is completed as follows.

Algorithm 5 [Solution of the $\sim Problem$

(i) Apply Algorithm 3.2 and select the prim ideal to which the initial

approximation $xf^{0)}$ , , $x_{n}^{(0)}$ belongs, and compute the relation (3.5) by

using a lexicographic Grobner basis.

(ii) Iterate the following steps for $k=0,1,2,$ $\cdots$ until the power series

solution is obtained to the desired order.

$(\ddot{u})-(1)$ Apply the iteration formula (2. 1).

$(\ddot{u})-(2)$ Reduce the coefficients $a_{ij}$ with the relation (3.5), representing

them as polynomials by using the extended Euclidean algorithm.
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As the conclusion of the result of Algorithm 5, the foliowing can be shown.

(I) For all the solutions $(x1^{0)}$ , $\cdot$ . . $x_{r\iota}^{(0)})$ at $\epsilon=0$ , which are zeros of a certain

prim ideal, the common expression is obtained.

(I) Even if the numeric solution $(x1^{0)}, \cdot\cdot. , x_{n}^{(0)})$ cannot be computed exactly,

the symbolic expression of power series expansion is exactly correct.

6. Example

Suppose that the system of equations,

$\{\begin{array}{l}f_{1}(x;,x_{2},\epsilon)=xf+x\not\leq-2-\epsilon=0f_{2}(x_{1},x_{2},\epsilon)=-x?+x_{2}-\epsilon=0\end{array}$

is given. We apply Algorithm 5 to this system.

(i) The ideal $I=(f1 (x\iota , x_{2},0), f_{2}(x_{1} , x_{2},0))$ is decomposed as follows.

$I=$ $(x1-1 , x_{2}- 1)$ $\cap(x1+1 , x_{2}+ 1)$

$\cap(x_{1}-\frac{1}{2}x\S +\frac{3}{2}x_{2} , x\int-5_{x}\not\in+8)$

Here, we select the third prime ideal. Since each basis is already a Grobner

basis, if we let the initial approximations be $x\}^{0)},x_{\triangle}^{I^{0)}}$ , the relation between

them are

$x I^{0)}-\frac{1}{2}x4^{0)3}$ $+ \frac{3}{2}x\xi^{0)}=0$ , (6. 1)

$x4^{0)4}-5x4^{0)2}+8=0$ . $(6.2s$

Note that (6.2) is the minimal polynomial of $xi^{0)}$ .
$(\ddot{u})k=0$

$(\ddot{u})-(1)$ The iteration formula (2. 1) is as follows.

$*9*$



$\{\begin{array}{l}xI^{k+1)}=\ovalbox{\tt\small REJECT} 4xf^{k)3_{X}}4^{l\sigma)}+xf^{k)2}+_{(}x4^{l\sigma)2}+2+_{k)}(-2x_{arrow}^{j^{k)}}+1)\epsilon 6X|^{l\sigma)2}x4k)+2x\{x4^{k+1)}=\ovalbox{\tt\small REJECT}^{+6x_{+2}}-xf^{k)3}+3xf^{k)}x_{6}4_{xjx4^{k)}}^{k)2}f^{k)}+(3xf^{t_{\backslash }^{r})}+2)\epsilon k)\end{array}$
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(6.3)

The first iteration gives

$\{\begin{array}{l}X\{1)=\frac{4xf^{0)3_{X}}4^{o)}+xf^{0)2}+x4^{o)2}+2+(-2x4^{o)}+1)\epsilon}{6xi^{0)2_{X}}4^{0)}+2x\}^{0)}}x4^{[)}=\frac{-xf^{0)3}+3x\}^{0)}x4^{o)2}+6xl^{0)}+(3xf^{0)}+2)\epsilon}{6xf^{0)_{X}}4^{o)}+2}\end{array}$ (6.4)

$(\ddot{u})-(2)$ Using the relations (6. 1) and (6.2), and reducing the numerators

and denominators of (6.4) respectively, we obtain

$\{\begin{array}{l}X\{1)=\frac{-4x4^{0)2}-4+(2x4^{0)}-1)\epsilon}{5x4^{o)3}-9x\xi^{0)}}x4^{[)}=\ovalbox{\tt\small REJECT}_{1^{)}2x4^{0)2}-44^{-9x}}12x4^{0)3}-44x4^{o}+(3x4^{o)3}4^{o)}+4)\epsilon\end{array}$ (6.5)

Applying the extended Euclidean algorithm to the denominators of (6.5) and

(6.2), we obtain

$\{\begin{array}{l}(x4^{o)3}-\frac{9}{5}x4^{0)})^{-1}\equiv-\frac{5}{\mathfrak{B}}x4^{o)3}+\frac{\ae}{\mathfrak{B}}x4^{0)}(x4^{0)2}-\frac{11}{3}x4^{0)})^{-1}\equiv-\frac{9}{\mathfrak{B}}x4^{0)2}+\frac{3}{7}modx4^{O)4}-5x4^{o)2}+8\end{array}$ (6.6)

The reduction of (6.5) with (6.6) and (6.2) gives

$\{\begin{array}{l}x\}^{1)}=(\frac{1}{2}x4^{0)3}-\frac{3}{2}x\xi^{0)})+(\frac{1}{\ae}x4^{o)3}-\frac{5}{\mathfrak{B}}x4^{0)2}-\frac{5}{\mathfrak{B}}x4^{0)}+\frac{4}{7})\epsilon x4^{[)}=x4^{0)}+\backslash -\frac{3}{56}x\xi^{0)3}-\frac{3}{\mathfrak{B}}x\xi^{0)2}+\frac{g}{\mathfrak{B}}x4^{o)}+\frac{1}{7}\epsilon\end{array}$ (6.7)

$*10*$



50
This is an $O(\epsilon^{2})$ approximation to the solution.

(ii) $k=1$

Only the result of the second iteration is shown here.

(6.8)

This is an $O(\epsilon^{4})$ approximation to the solution. At this iteration step, the

rational expression of $\epsilon$ is transformed into the truncated power series of $\epsilon$ , by

calculating the expansion of the reciprocal of the denominator polynomial.

7. Note on the computational efficiency

When we apply the iteration formula (2. 1), the convergence is second order,

but the computation of $F^{-1}(x^{(k)}, \epsilon)$ in each iteration step is time consuming. If

we use $F^{-1}(x^{(0)},0)$ in place of $F^{-1}(x^{(k)}, \epsilon)$ , which is the constant term of the

latter for every $k$ , the convergence is first order, that is, $x^{(k)}$ is an $0(\epsilon^{(k)})$

approximation. However, the computational complexity in each step becomes small.

When the desired order of the power series solution is not high, this modifigd

method may be more efficient.
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