817 research outputs found

    Hydrodynamic Models for Heavy-Ion Collisions, and beyond

    Get PDF
    A generic property of a first-order phase transition in equilibrium, and in the limit of large entropy per unit of conserved charge, is the smallness of the isentropic speed of sound in the ``mixed phase''. A specific prediction is that this should lead to a non-isotropic momentum distribution of nucleons in the reaction plane (for energies around 40 AGeV in our model calculation). On the other hand, we show that from present effective theories for low-energy QCD one does not expect the thermal transition rate between various states of the effective potential to be much larger than the expansion rate, questioning the applicability of the idealized Maxwell/Gibbs construction. Experimental data could soon provide essential information on the dynamics of the phase transition.Comment: 10 Pages, 4 Figures. Presented at 241st WE-Heraeus Seminar: Symposium on Fundamental Issues in Elementary Matter: In Honor and Memory of Michael Danos, Bad Honnef, Germany, 25-29 Sep 200

    The K/pi ratio from condensed Polyakov loops

    Get PDF
    We perform a field-theoretical computation of hadron production in large systems at the QCD confinement phase transition associated with restoration of the Z(3) global symmetry. This occurs from the decay of a condensate for the Polyakov loop. From the effective potential for the Polyakov loop, its mass just below the confinement temperature T_c is in between the vacuum masses of the pion and that of the kaon. Therefore, due to phase-space restrictions the number of produced kaons is roughly an order of magnitude smaller than that of produced pions, in agreement with recent results from collisions of gold ions at the BNL-RHIC. From its mass, we estimate that the Polyakov loop condensate is characterized by a (spatial) correlation scale of 1/m_\ell ~ 1/2 fm. For systems of deconfined matter of about that size, the free energy may not be dominated by a condensate for the Polyakov loop, and so the process of hadronization may be qualitatively different as compared to large systems. In that vein, experimental data on hadron abundance ratios, for example K/pi, in high-multiplicity pp events at high energies should be very interesting.Comment: 7 pages, 4 figures; discussion of the two-point function of Polyakov Loops in small versus large systems adde

    Multi Hamilton-Jacobi quantization of O(3) nonlinear sigma model

    Get PDF
    The O(3) non-linear sigma model is investigated using multi Hamilton-Jacobi formalism. The integrability conditions are investigated and the results are in agreement with those obtained by Dirac's method. By choosing an adequate extension of phase space we describe the transformed system by a set of three Hamilton-Jacobi equations and calculate the corresponding action.Comment: 10 pages, LaTeX, to be published in Mod. Phys. Lett.

    Search for a Ridge Structure Origin with Shower Broadening and Jet Quenching

    Full text link
    We investigate the role of jet and shower parton broadening by the strong colour field in the Δη\Delta\eta-Δϕ\Delta\phi correlation of high pTp_T particles. When anisotropic momentum broadening (Δpz>ΔpT\Delta p_z > \Delta p_T) is given to jet and shower partons in the initial stage, a ridge-like structure is found to appear in the two hadron correlation. The ratio of the peak to the pedestal yield is overestimated.Comment: Talk given at 20th Int. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions, Jaipur, India, Feb.4-10, 200

    Thermochronological Constraints on the Timing and Magnitude of Miocene and Pliocene Extension in the Central Wassuk Range, Western Nevada

    Get PDF
    Apatite fission track and (U-Th)/He thermochronological data provide new constraints on the timing of faulting and exhumation of the Wassuk Range, western Nevada, where east dipping normal faults have accommodated large-magnitude ENE-WSW oriented extension. Extensional deformation has resulted in the exhumation of structurally coherent fault blocks that expose sections of preextensional mostly granitic upper crust in the Grey Hills and central Wassuk Range. These fault blocks display westward tilts of ∌60° and expose preextensional paleodepths of up to ∌8.5 km, based on the structural reconstruction of tilted preextensional Tertiary andesite flows that unconformably overlie Mesozoic basement rocks. Apatite fission track and (U-Th)/He thermochronological data from the fault blocks constrain the onset of rapid footwall exhumation at ∌15 Ma. Fission track modeling results indicate rapid fault block exhumation occurred between ∌15 and 12 Ma, which is in agreement with Miocene volcanic rocks that bracket the tilting history. In addition, fission track and (U-Th)/He data suggest reduced rates of cooling following major extension, as well as renewed cooling related to active, high-angle faulting along the present-day range front starting at ∌4 Ma. Thermochronological data from structurally restored fault blocks indicate a preextensional Miocene geothermal gradient of 27° ± 5°C/km. The thermochronological constraints on the timing of extensional faulting and the eruptive history in the Wassuk Range imply a model for extension where crustal heating and volcanism precede the onset of rapid large magnitude extension, and where synextensional magmatism is suppressed during the highest rates of extension

    Initial State: Theory Status

    Full text link
    I present a brief discussion of the different approaches to the study initial state effects in heavy ion collisions in view of the recent results from Pb+Pb and p+p collisions at the LHC.Comment: 8 pages, 6 figures. Contribution to the proceedings of the XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, QM2011. Annecy, France, 22-28 May 201

    Chemical equilibration and thermal dilepton production from the quark gluon plasma at finite baryon density

    Get PDF
    The chemical equilibration of a highly unsaturated quark-gluon plasma has been studied at finite baryon density. It is found that in the presence of small amount of baryon density, the chemical equilibration for gluon becomes slower and the temperature decreases less steeply as compared to the baryon free plasma. As a result, the space time integrated yield of dilepton is enhanced if the initial temperature of the plasma is held fixed. Even at a fixed initial energy density, the suppression of the dilepton yields at higher baryo-chemical potential is compensated, to a large extent, by the slow cooling of the plasma.Comment: Latex, 19 pages, 8 postscript figures. To appear in Phys. Rev.

    Two-Phase Westward Encroachment of Basin and Range Extension into the Northern Sierra Nevada

    Get PDF
    Structural, geophysical, and thermochronological data from the transition zone between the Sierra Nevada and the Basin and Range province at latitude ~39°N suggest ~100 km westward encroachment of Basin and Range extensional deformation since the middle Miocene. Extension, accommodated primarily by cast dipping normal faults that bound west tilted, range-forming fault blocks, varies in magnitude from150% in the Wassuk and Singatse Ranges to the east. Geological and apatite fission track data from exhumed upper crustal sections in the Wassuk and Singatse Ranges point to rapid footwall cooling related to large magnitude extension starting at ~14-15 Ma. Farther to the west, geological and thermochronological data indicate a younger period of extension in the previously unextended Pine Nut Mountains, the Carson Range, and the Tahoe-Truckee depression initiated between 10 Ma and 3 Ma, and incipient post-0.5 Ma faulting to the west of the Tahoe-Truckee area. These data imply the presence of an extensional breakaway zone between the Singatse Range and the Pine Nut Mountains at ~14-15 Ma, forming the boundary between the Sierra Nevada and Basin and Range at that time. In addition, fission track data imply a Miocene preextensional geothermal gradient of 27 ± 5°C km -1 in the central Wassuk Range and 20 ± 5°C km -1 in the Singatse Range, much higher than the estimated early Tertiary gradient of 10 ± 5°C km -1 for the Sierra Nevada batholith. This might point to a significant increase in geothermal gradients coupled with a likely decrease in crustal strength enabling the initiation of extensional faulting. Apatite fission track, geophysical, and geological constraints across the Sierra Nevada-Basin and Range transition zone indicate a two-stage, coupled structural and thermal westward encroachment of the Basin and Range province into the Sierra Nevada since the middle Miocene
    • 

    corecore