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We compute expectation values of spatial Wilson loops in the forward light cone of high-energy colli-
sions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective
action as well as solutions of high-energy renormalization group evolution with fixed and running cou-
pling. The initial fields correspond to a color field condensate exhibiting domain-like structure over
distance scales of order the saturation scale. At later times universal scaling emerges at large distances
for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop
to the two-point correlator of magnetic fields.
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1. Introduction

Heavy ion collisions at high energies involve non-linear dynam-
ics of strong QCD color fields [1]. These soft fields correspond to
gluons with light-cone momentum fractions x � 1, which can be
described in the “Color Glass Condensate” (CGC) framework. Be-
cause of the high gluon occupation number the gluon field can be
determined from the classical Yang–Mills equations with a static
current on the light cone [2]. It consists of gluons with a transverse
momentum on the order of the density of valence charges per unit
transverse area, Q 2

s [3]. Parametrically, the saturation momentum
scale Q s separates the regime of non-linear color field interactions
from the perturbative (linear) regime. It is commonly defined using
a two-point function of electric Wilson lines, the “dipole scattering
amplitude” evaluated in the field of a single hadron or nucleus [4]
as described below.

Before the collision the individual fields of projectile and target
are two dimensional pure gauges; in light cone gauge,

αi
m = i

g
Vm∂ i V †

m (1)

where m = 1,2 labels the projectile and target, respectively. Here
Vm are light-like SU(Nc) Wilson lines, which correspond to the
eikonal phase of a high energy projectile passing through the clas-
sical field shockwave [5,6].

* Corresponding author.
http://dx.doi.org/10.1016/j.physletb.2014.05.005
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
The field in the forward light cone after the collision up to
the formation of a thermalized plasma is commonly called the
“glasma” [7]. Immediately after the collision longitudinal chromo-
electric and magnetic fields Ez, Bz ∼ 1/g dominate [7,8]. They fluc-
tuate according to the random local color charge densities of the
valence sources. The magnitude of the color charge fluctuations is
related to the saturation scale Q 2

s . The transverse gauge potential
at proper time τ ≡ √

t2 − z2 → 0, is given by [9]

Ai = αi
1 + αi

2. (2)

Note that while the fields of the individual projectiles αi
m are pure

gauges, for a non-Abelian gauge theory Ai is not. Hence, spatial
Wilson loops evaluated in the field Ai are not equal to 1. The
field at later times is then obtained from the classical Yang–Mills
equations of motion, which can be solved either analytically in
an expansion in the field strength [9,10] or numerically on a lat-
tice [11–13]. The Wilson loop, and the magnetic field correlator,
provide an explicitly gauge-invariant method to study the nonper-
turbative dynamics of these fields, complementary to studies of the
gluon spectrum [14].

Spatial Wilson loops at very early times τ have recently been
studied numerically in Ref. [15], using the MV model [7,8]. for
the colliding color charge sheets. It was observed that the loops
effectively satisfy area law scaling for radii � 1/Q s, up to a few
times this scale. Furthermore, Ref. [16] found that two-point cor-
relators of Bz over distances � 1/Q s correspond to two dimen-
sional screened propagators with a magnetic screening mass a few
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times Q s. This indicates that the initial fields exhibit structure such
that magnetic flux does not spread uniformly over the transverse
plane (like in a Coulomb phase) but instead is concentrated in
small domains.

The present paper extends this previous work as follows. We
perform lattice measurements of spatial Wilson loops over a much
broader range of radii to analyze their behavior at short (R �
1/Q s) and long (R � 1/Q s) distances. We also implement the
so-called JIMWLK [3,17,18] high-energy functional renormaliza-
tion group evolution which resums observables to all orders in
αs log(1/x). High-energy evolution modifies the classical ensemble
of gauge field configurations (4), (5) to account for nearly boost
invariant quantum fluctuations at rapidities far from the sources.
Finally, we also solve the Yang–Mills equations in the forward light
cone to study the time evolution of magnetic flux loops.

The calculation of the initial conditions and the numerical solu-
tion of the classical boost-invariant1 Yang–Mills fields in the initial
stages of a heavy ion collision have been documented in the refer-
ences given below, so here we will only describe them very briefly
in Section 2 before moving on to show our results in Sections 3
and 4.

2. Lattice implementation

We work on a two dimensional square lattice of N2⊥ points with
periodic boundary conditions and consider color sources that fill
the whole transverse plane. The lattice spacing is denoted as a,
thus the area of the lattice in physical units is L2 = N2⊥a2. The
calculations are performed for Nc = 3 colors. In this work we only
consider symmetric collisions, where the color charges of both col-
liding nuclei are taken from the same probability distribution.

In this work we compare three different initial conditions for
the classical Yang–Mills equations: the classical MV model (5) as
well as fixed and running coupling JIMWLK evolution. We define
the saturation scale Q s(Y ) at rapidity Y through the expectation
value of the dipole operator as

1

Nc

〈
Tr V †(xT )V (yT )

〉
Y ,|xT −yT |=√

2/Q s
= e−1/2. (3)

Throughout this paper we shall use Q s defined in this way from
the light-like Wilson lines V (xT ) in the fundamental representa-
tion. The saturation scale is the only scale in the problem and we
attempt to construct the various initial conditions in such a way
that the value of Q sa is similar, to ensure a similar dependence on
discretization effects.

In the MV model the Wilson lines are obtained from a classical
color charge density ρ as

V (xT ) = Pexp

{
i

∫
dx− g2 1

∇2
T

ρa(xT , x−)}
, (4)

where P denotes path-ordering in x− . The color charge density is
a random variable with a local Gaussian probability distribution

P
[
ρa] ∼ exp

{
−

∫
d2xT dx− ρa(xT , x−)ρa(xT , x−)

2μ2(x−)

}
. (5)

The total color charge
∫

dx− μ2(x−) ∼ Q 2
s is proportional to the

thickness of a given nucleus.

1 The YM equations are solved in terms of the coordinates τ = √
t2 − z2, η =

1
2 ln t+z

t−z and xT ; hence ds2 = dτ 2 − τ 2 dη2 − dx2
T .
In the numerical calculation the MV model initial conditions
have been constructed as described in Ref. [13], discretizing the
longitudinal coordinate Y in N y = 100 steps. For the calculations
using the MV model directly for the initial conditions (1), (2)
we have performed simulations on lattices of two different sizes:
N⊥ = 1024, with the MV model color charge parameter g2μL =
156 which translates into Q sa = 0.119; and with N⊥ = 2048, us-
ing g2μL = 550, which results in Q sa = 0.172.

The MV model also provides the configurations used as the ini-
tial condition for quantum evolution in rapidity via the JIMWLK
renormalization group equation, starting at Y = log x0/x = 0. Per-
forming a step �Y in rapidity opens phase space for radiation of
additional gluons which modify the classical action (4), (5). This
process can be expressed as a “random walk” in the space of light-
like Wilson lines V (xT ) [18–20]:

∂Y V (xT ) = V (xT )
i

π

∫
d2uT

(xT − uT )iηi(uT )

(xT − uT )2

− i

π

∫
d2vT V (vT )

(xT − vT )iηi(vT )

(xT − vT )2
V †(vT )V (xT ),

(6)

where the Gaussian white noise ηi = ηi
ata satisfies 〈ηa

i (xT )〉 = 0
and, for fixed coupling,〈
ηa

i (xT )ηb
j (yT )

〉 = αsδ
abδi jδ

(2)(xT − yT ). (7)

Here the equation is written in the left–right symmetric form in-
troduced in [20,21].

The fixed coupling JIMWLK equation is solved using the numer-
ical method developed in [19,20,22]. For the smaller lattice size
N⊥ = 1024 we start with the MV model with g2μL = 31 and with-
out a mass regulator, which corresponds to an initial Q sa = 0.0218.
After �y = 1.68/αs units of evolution in rapidity2 this results
in Q sa = 0.145. For an N⊥ = 2048-lattice we again start with
g2μL = 31, corresponding to Q sa = 0.0107, and after �y = 1.8/αs
units of evolution end up with Q sa = 0.141.

For running coupling the evolution is significantly slower. We
use the running coupling prescription introduced in [20], where
the scale of the coupling is taken as the momentum conjugate to
the distance in the noise correlator in Eq. (7). For the smaller N⊥ =
1024 lattice we again start with g2μL = 31, i.e. Q sa = 0.0218 and
evolve for �Y = 10 units in rapidity, arriving at Q sa = 0.118. For
the larger N⊥ = 2048 lattice we test a configuration that is farther
from the IR cutoff, starting the JIMWLK evolution with g2μL =
102.4, i.e. Q sa = 0.0423 and evolve for �Y = 10 units in rapidity,
arriving at Q sa = 0.172. In the rc-JIMWLK simulations the QCD
scale is taken as ΛQCDa = 0.00293 and the coupling is frozen to a
value α0 = 0.76 in the infrared below 2.5ΛQCD.

As already mentioned above, RG evolution in rapidity resums
quantum corrections to the fields α

μ
m of the individual charge

sheets to all orders in αs log 1/x, with leading logarithmic accu-
racy. In other words, the effective action at Y is modified from
that at Y = 0, written in Eq. (5).

Once an ensemble of Wilson lines V (xT ) at a rapidity Y is
constructed, separately for both projectile and target, these con-
figurations define αi

1 and αi
2 in light-cone gauge as written in

Eq. (1); the initial field Ai of produced soft gluons at proper
time τ = +0 corresponds to their sum, Eq. (2). The evolution to
τ > 0 follows from the real-time Hamiltonian evolution described
in Ref. [11]. This has been used in many classical field calculations,

2 For fixed coupling the evolution variable is αs y, so we do not need to specify a
particular value of αs separately.
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Fig. 1. Wilson loop as a function of area for different initial conditions and times
measured on N⊥ = 2048 lattices. The thicker lines at the top correspond to time
Q sτ = 0, for the classical MV model as well as for fixed and running coupling
JIMWLK evolution. The results for Q sτ = 1,3,5 are shown by the thinner lines,
with later times corresponding to smaller values of ln(− ln W ).

e.g. in Ref. [12], or more recently for the first study of the effects
of JIMWLK evolution on the gluon spectrum [14], and in the IP-
glasma model for the initial conditions for hydrodynamics [23]. On
the N⊥ = 2048 lattices we evolve the fields up to Q sτ = 5 and on
the smaller N⊥ = 1024 ones to Q sτ = 10. In this study, the nuclei
are taken to fill the whole transverse lattice, with periodic bound-
ary conditions.

3. Wilson loop

In the continuum the spatial (magnetic) Wilson loop is de-
fined as the trace of a path ordered exponential of the gauge field
around a closed path of area A in the transverse plane:

W (A) = 1

Nc

〈
TrPexp

{
ig

∮
∂ A

dxT · AT

}〉
. (8)

On the lattice this is easily discretized as the product of link ma-
trices around a square of area A. For Nc ≥ 3 colors any particular
Wilson loop is complex but the ensemble average is real.

We have measured the expectation value of the Wilson loop in
the glasma field, with different initial conditions and at different
times Q sτ . The results of the calculation are shown in Fig. 1. As
expected, the magnetic flux through a loop generically increases
with its area. Focusing first on the curves corresponding to the
initial time τ = 0 we observe that the resummation of quantum
fluctuations (JIMWLK evolution) increases the flux through small
loops of area A Q 2

s < 1. This can be understood intuitively as due to
emission of additional virtual soft gluons in the pure gauge fields
of the colliding charge sheets. On the other hand, the flux through
large loops, A Q 2

s � 2, decreases. This indicates uncorrelated fluc-
tuations of magnetic flux over such areas and is consistent with
the suggestion that the flux is “bundled” in domains with a typical
area ∼ 1/Q 2

s [15]. Accordingly, loops of area ∼ 1.5Q 2
s are invariant

under high-energy evolution.
Moving on to finite times we see that the flux through loops of

fixed area decreases with τ . This is, of course, a consequence of the
decreasing field strength in an expanding metric. For small loops
the ordering corresponding to the different initial conditions (MV,
rc-JIMWLK, fc-JIMWLK) is preserved even at later times. However,
for large loops one observes a striking “universality” emerging at
Q sτ ∼ 5 as the curves for all initial conditions fall on top of each
other.
Fig. 2. Time dependence of the exponents γ in the parametrization (9) fitted to the
UV region.

Fig. 3. Time dependence of the exponents γ in the parametrization (9) fitted to the
IR region.

The data from Fig. 1 shows an approximately linear dependence
of ln(− ln W ) on ln(A Q 2

s ), with different slopes in the regime of
small A Q 2

s � 1 vs. large A Q 2
s � 1. Based on this observation we

fit the data to

W (A) = exp
{−(σ A)γ

}
, (9)

with separate parametrizations for the IR and UV regimes:

IR: e0.5 < A Q 2
s < e5, (10)

UV: e−3.5 < A Q 2
s < e−0.5. (11)

In addition to limiting the fits to the quoted ranges we also re-
strict them to the region where W > 0.01 and the statistical error
on W is less than 0.2W ; beyond these limits the data exhibits
too large fluctuations for a meaningful fit. Figs. 2 and 3 show the
time dependence of the exponents γ in the IR and UV regions. The
“string tension” σ naturally decreases as ∼ 1/τ because of the lon-
gitudinal expansion of the glasma, which leads to Bz ∼ 1/

√
τ . We

therefore show, in Figs. 4 and 5, the time dependence of the com-
bination τσ/Q s, where this leading effect is scaled out. The values
of σ/Q 2

s for Q sτ = 0 are given in the captions.3

3 For the MV model, at τ = 0 we find σ/Q 2
s = 0.44 in the IR region which is

about four times larger than the value reported in Ref. [15]. Our present results
refer to Nc = 3 colors while Ref. [15] considered Nc = 2; also, our current definition
of Q s via Eq. (3) leads to smaller values for this quantity than the definition used
in [15]. Finally, σ is extracted from fits over a somewhat different range of areas.
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Fig. 4. Time dependence of “string tension” coefficient σ fitted to the UV region.
The values of σ/Q 2

s at τ = 0 are 0.59 [0.57]; 0.55 [0.53] and 0.56 [0.56] for the MV,
rc-JIMWLK and fc-JIMWLK initial conditions respectively on an N⊥ = 1024 [N⊥ =
2048] lattice.

Fig. 5. Time dependence of “string tension” coefficient σ fitted to the IR region,
multiplied by τ to separate out the natural σ ∼ 1/τ dependence due to the expan-
sion of the system. The values of σ/Q 2

s at τ = 0 are 0.43 [0.44]; 0.37 [0.38] and
0.39 [0.40] for the MV, rc-JIMWLK and fc-JIMWLK initial conditions respectively on
an N⊥ = 1024 [N⊥ = 2048] lattice.

The results in the “UV”-regime probed by Wilson loops of small
area are shown in Figs. 2 and 4. They are easily understood from
the differences in the initial condition. The gluon spectrum in the
MV model falls steeply as a function of kT , leading to a steep
dependence of short-distance correlators on the distance. Our re-
sult for the UV exponent in Fig. 2 is close to the A2-scaling ob-
tained analytically in a weak field expansion [24]. The difference
is probably due to a combination of logarithmic corrections and
lattice UV cutoff effects. For the JIMWLK ensembles the gluon
spectrum is much harder [14], especially for fixed coupling. This
manifests itself in smaller values of both γ and σ . In addition,
the UV exponents are remarkably time independent at Q sτ > 1:
this is consistent with the expectation that at such time the UV
modes can be viewed as noninteracting gluons whose spectrum is
close to the expectation from a perturbative kT -factorized calcula-
tion [25].

The behavior in the IR regime (Figs. 3, 5) probed by large
Wilson loops points to a very different picture. At τ = 0 the expo-
nents γ and, to a lesser extent, the values of σ depend very much
on the initial conditions. As already alluded to above, the scal-
ing exponents γIR < 1 obtained for the JIMWLK fields indicate that
quantum emissions increase magnetic flux fluctuations at the scale
∼ 1/Q s, much smaller than the area of the loop. It is interesting
to note that for the rather strong fixed-coupling evolution the ini-
tial scaling exponent is not too far above γIR = 1/2 corresponding
to perimeter scaling.

At times Q sτ � 3, however, one observes a remarkable uni-
versality in the IR as the curves corresponding to different initial
conditions collapse onto a single curve in Fig. 1. The string ten-
sions in Fig. 5 are within 10% of each other at late Q sτ , and the
exponents γ in Fig. 3 are very close to each other, with values
around γIR ≈ 1.2 . . . 1.3. The exponent gradually decreases with τ ,
potentially approaching the area law γ = 1 at late times. The initial
evolution points at a rapid rearrangement of “magnetic hot spots”
to some universal field configurations at later time, Q sτ � 3.

We stress that the universal behavior of large magnetic loops,
characterized by a nontrivial power-law dependence on the loop
area, sets in at rather early time scales of a few times 1/Q s, in-
dependent of initial conditions. Actual area law scaling γ = 1 is
approached only later. This behavior mirrors a similar universal-
ity between MV and JIMWLK results seen in the IR part of the
gluon spectrum (determined from correlators of gauge fixed fields)
in Ref. [14]. Since the structure of the fields does not seem to de-
pend on the initial conditions, we infer that this universality is due
to strong interactions in the glasma phase. This universal behavior
of the Wilson loop for different initial conditions at Q sτ � 3 and
A Q 2

s � 1 is the main result of this paper.

4. Magnetic field correlator

In this section we analyze gauge-invariant two-point magnetic
field correlators of the form4

C B(r) ≡ 2g2 Tr
〈
Bz(xT )UxT →yT Bz(yT )U †

xT →yT

〉
. (12)

The points xT and yT are separated in the x or y direction by a
distance r = |xT − yT |, and the Wilson line UxT →yT is the ordered
product of links along the straight line separating these points.

The magnetic field Bz = ta Ba
z on the lattice is defined as the

traceless anti-hermitian part of the plaquette as

g Ba
z(xT ) = 2 Re Tr taUx,y(xT ), (13)

where the transverse plaquette is

Ui, j(xT ) = Ui(xT )U j(xT + iT )U †
i (xT + jT )U †

j(xT ). (14)

Here Ui(xT ) denotes the link matrix in the i-direction based at xT

and iT , jT are unit vectors.
The resulting magnetic field correlator rC B(r) is plotted in

Fig. 6. We have multiplied by r to better expose the behavior
around r ∼ 1/Q s. At the initial time there is a significant anti-
correlation at intermediate distances. It shows the domain struc-
ture of the field such that Bz is likely to flip sign5 (or direction)
over distances of order 1/Q s. This structure then changes very
rapidly: already at time Q sτ ∼ 2 the fields have rearranged such
that the anti-correlation has disappeared. Also, the subsequent
time evolution results in damping of the fluctuations at Q sr � 1
which are present in the initial field configurations. On the other
hand, the strong short-distance correlations around the peak are

4 We include the factor g2 for convenience, because the quantity that appears
naturally in the classical lattice formulation is actually g B .

5 Recall that B transforms homogeneously. Hence, unlike the links Ui(xT ), the
magnetic field Bz(xT ) can be diagonalized everywhere by a suitable gauge transfor-
mation.
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Fig. 6. Magnetic field correlator on a 10242-lattice at Q sτ = 0, 2, and 10; the latter
have been rescaled by factors of 20 and 100, respectively.

Fig. 7. Magnetic field correlator C B (r) at Q sτ = 10 on a 10242-lattice. The line cor-
responds to ∼ r−α with the exponent α = 4 − 2γIR = 1.55 extracted in the previous
section from the fit of γIR to the Wilson loop.

not affected much by the time evolution beyond Q sτ ∼ 2, aside
from a decrease in magnitude. In particular, no “infrared diffusion”
of the peak towards larger distances is observed.

Given the clear scaling behavior of the Wilson loop one might
expect to see a similar phenomenon for the magnetic field correla-
tor. A very naive scaling argument would assume that if C(r) ∼ r−α

then the Wilson loop should scale as

− ln W ∼
∫
A

d2xT d2yT C
(|xT − yT |)

∼ R4−α ∼ A
4−α

2 = Aγ . (15)

The area integrals in the first line extend over |xT |, |yT | < R . Thus,
γ = 1.225 extracted from the Wilson loop at Q sτ = 10 would give
C B(r) ∼ r−1.55. On a logarithmic scale C B(r) does indeed qualita-
tively resemble such behavior as shown in Fig. 7. However, this
kind of scaling is less conclusive than for the Wilson loop (see also
Appendix A); this could be an indication for the presence of higher
cumulants in the expansion of the spatial Wilson loop [26].

5. Summary

In this paper we have provided some insight into the fields
produced initially in a high-energy collision of dense color charge
sheets. We have focused, in particular, on the structure of the lon-
gitudinal magnetic field Bz .

We consider both purely classical as well as JIMWLK RG evolved
gauge field ensembles on which we measure expectation values
of spatial Wilson loops and two-point correlation functions of Bz .
These show that the initial fields exhibit domain-like structure
over distance scales of the order of the inverse saturation scale
1/Q s. Classical YM evolution to later times leads to universal scal-
ing, for all ensembles, of the magnetic loop with area, with a
nontrivial critical exponent. Also, the anti-correlation of Bz(xT )

over distances ∼ 1/Q s disappears, which we interpret as rear-
rangement, possibly accompanied by transverse expansion, of the
magnetic field domains.

The emergence of a color field condensate in high-energy colli-
sions of dense hadrons or nuclei is a very interesting phenomenon,
and its dynamics remains to be understood in more detail. In
closing we only draw attention to recent arguments that the pres-
ence of such a condensate might have important implications
for the process of (pre-)thermalization in high multiplicity colli-
sions [27].
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Appendix A. Relation between the Wilson loop and magnetic
field correlator

In an Abelian theory there is a simple relation between the Wil-
son loop and the magnetic field due to Stokes’ theorem:∮
∂ A

dx · A =
∫
A

d2x Bz(x). (A.1)

If we assume that in the non-Abelian case the magnetic field in
each color channel a is independent, and that it consists of un-
correlated domains which are much smaller than the area A and
distributed as Gaussian random variables, we obtain the following
estimate for the Wilson loop:

1

Nc
Tr exp

{
ig

∮
∂ A

dx · A
}

≈ exp

{
− g2

2Nc

〈
Tr

[∫
A

d2x Bz(x)

]2〉}

= exp

{
− 1

4Nc

∫
A

d2x d2y C B(x − y)

}
. (A.2)

In Fig. 8 we compare the result of a numerical integration of the
r.h.s. of Eq. (A.2) using the measured magnetic field correlator, to
the direct measurement of the Wilson loop. It can be seen that
the two are in a relatively good agreement. This consistency check
supports the interpretation of Bz as independent field domains of
area ∼ 1/Q 2

s .
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Fig. 8. Direct measurement of the Wilson loop (points) compared to an approxima-
tion in terms of the Gaussian cumulant, Eq. (A.2), which reconstructs it from the
magnetic field correlator (lines).
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