202,183 research outputs found

    Associated Charmonium Production in Low Energy p-pbar Annihilation

    Full text link
    The QCD mechanisms underlying the exclusive strong decays and hadronic production amplitudes of charmonium remain poorly understood, despite decades of study and an increasingly detaled body of experimental information. One set of hadronic channels of special interest are those that include baryon-antibaryon states. These are being investigated experimentally at BES and CLEO-c in terms of their baryon resonance content, and are also of interest for the future PANDA experiment, in which charmonium and charmonium hybrids will be produced in p-pbar annihilation in association with light mesons. In this paper we develop a simple initial-state light meson emission model of the near-threshold associated charmonium production processes p pbar -> pi0 ccbar, and evaluate the differential and total cross sections for these reactions in this model. (Here we consider the ccbar states eta_c, J/psi, psi', chi_0 and chi_1.) The predicted near-threshold cross section for p pbar -> pi0 J/psi is found to be numerically similar to two previous theoretical estimates, and is roughly comparable to the (sparse) existing data for this process. The theoretical charmonium angular distributions predicted by this model are far from isotropic, which may be of interest for PANDA detector design studies.Comment: 6 pages, 4 figures, uses graphicx and feynm

    Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme

    Get PDF
    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as water delivery requirement, environmental constraints, dry/wet conditions, etc. In this paper, a robust reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve CART's predictive performance. An application study of nine major reservoirs in California is carried out. Results produced by the enhanced CART, original CART, and random forest are compared with observation. The statistical measurements show that the enhanced CART and random forest overperform the CART control run in general, and the enhanced CART algorithm gives a better predictive performance over random forest in simulating the peak flows. The results also show that the proposed model is able to consistently and reasonably predict the expert release decisions. Experiments indicate that the release operation in the Oroville Lake is significantly dominated by SWP allocation amount and reservoirs with low elevation are more sensitive to inflow amount than others

    Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: A machine learning study

    No full text
    Background Posterior cingulate cortex (PCC) is a key aspect of the default mode network (DMN). Aberrant PCC functional connectivity (FC) is implicated in schizophrenia, but the potential for PCC related changes as biological classifier of schizophrenia has not yet been evaluated. Methods We conducted a data-driven approach using resting-state functional MRI data to explore differences in PCC-based region- and voxel-wise FC patterns, to distinguish between patients with first-episode schizophrenia (FES) and demographically matched healthy controls (HC). Discriminative PCC FCs were selected via false discovery rate estimation. A gradient boosting classifier was trained and validated based on 100 FES vs. 93 HC. Subsequently, classification models were tested in an independent dataset of 87 FES patients and 80 HC using resting-state data acquired on a different MRI scanner. Results Patients with FES had reduced connectivity between PCC and frontal areas, left parahippocampal regions, left anterior cingulate cortex, and right inferior parietal lobule, but hyperconnectivity with left lateral temporal regions. Predictive voxel-wise clusters were similar to region-wise selected brain areas functionally connected with PCC in relation to discriminating FES from HC subject categories. Region-wise analysis of FCs yielded a relatively high predictive level for schizophrenia, with an average accuracy of 72.28% in the independent samples, while selected voxel-wise connectivity yielded an accuracy of 68.72%. Conclusion FES exhibited a pattern of both increased and decreased PCC-based connectivity, but was related to predominant hypoconnectivity between PCC and brain areas associated with DMN, that may be a useful differential feature revealing underpinnings of neuropathophysiology for schizophrenia

    Asteroseismology of the δ\delta Scuti star HD 50844

    Full text link
    Aims. We aim to probe the internal structure and investigate more detailed information of the δ\delta Scuti star HD 50844 with asteroseismology. Methods. We analyse the observed frequencies of the δ\delta Scuti star HD 50844 obtained by Balona (2014), and search for possible multiplets based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 by means of the rotational splitting only. We then compare them with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results. There are three multiplets including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree ll and azimuthal number mm are unique. The corresponding rotational period of HD 50844 is found to be 2.440.08+0.13^{+0.13}_{-0.08} days. The physical parameters of HD 50844 are well limited in a small region by three modes identified as nonradial ones (f11f_{11}, f22f_{22}, and f29f_{29}) and by the fundamental radial mode (f4f_{4}). Our results show that the three nonradial modes (f11f_{11}, f22f_{22}, and f29f_{29}) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4f_{4}) mainly represents the property of the stellar envelope. In order to fit these four pulsation modes, both the helium core and the stellar envelope must be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ±\pm 0.004 MM_{\odot} for the first time. The physical parameters of HD 50844 are determined to be M=M= 1.81 ±\pm 0.01 MM_{\odot}, Z=Z= 0.008 ±\pm 0.001. Teff=T_{\rm eff}= 7508 ±\pm 125 K, logg=g= 3.658 ±\pm 0.004, R=R= 3.300 ±\pm 0.023 RR_{\odot}, L=L= 30.98 ±\pm 2.39 LL_{\odot}.Comment: 11 pages, 7 figures, 6 tables, accepted for publication in A&

    I=2 Two-Pion Wave Function and Scattering Phase Shift

    Get PDF
    We calculate a two-pion wave function for the I=2 SS-wave two-pion system with a finite scattering momentum and estimate the interaction range between two pions, which allows us to examine the validity of a necessary condition for the finite size formula presented by Rummukainen and Gottlieb. We work in the quenched approximation employing the plaquette gauge action for gluons and the improved Wilson action for quarks at 1/a=1.63GeV1/a=1.63 {\rm GeV} on 323×12032^3\times 120 lattice. The quark masses are chosen to give mπ=0.420m_\pi = 0.420, 0.488 and 0.587GeV0.587 {\rm GeV}. We find that the energy dependence of the interaction range is small and the necessary condition is satisfied for our range of the quark mass and the scattering momentum, k0.16GeVk \le 0.16 {\rm GeV}. We also find that the scattering phase shift can be obtained with a smaller statistical error from the two-pion wave function than from the two-pion time correlator.Comment: 23 pages, 7 figures, added a reference (Phys.Rev.D73:054503,2006) in v

    Eruption of a multi-flux-rope system in solar active region 12673 leading to the two largest flares in Solar Cycle 24

    Full text link
    Solar active region (AR) 12673 in 2017 September produced two largest flares in Solar Cycle 24: the X9.3 flare on September 06 and the X8.2 flare on September 10. We attempt to investigate the evolutions of the two great flares and their associated complex magnetic system in detail. Aided by the NLFFF modeling, we identify a double-decker flux rope configuration above the polarity inversion line (PIL) in the AR core region. The north ends of these two flux ropes were rooted in a negative- polarity magnetic patch, which began to move along the PIL and rotate anticlockwise before the X9.3 flare on September 06. The strong shearing motion and rotation contributed to the destabilization of the two magnetic flux ropes, of which the upper one subsequently erupted upward due to the kink-instability. Then another two sets of twisted loop bundles beside these ropes were disturbed and successively erupted within 5 minutes like a chain reaction. Similarly, multiple ejecta components were detected to consecutively erupt during the X8.2 flare occurring in the same AR on September 10. We examine the evolution of the AR magnetic fields from September 03 to 06 and find that five dipoles emerged successively at the east of the main sunspot. The interactions between these dipoles took place continuously, accompanied by magnetic flux cancellations and strong shearing motions. In AR 12673, significant flux emergence and successive interactions between the different emerging dipoles resulted in a complex magnetic system, accompanied by the formations of multiple flux ropes and twisted loop bundles. We propose that the eruptions of a multi-flux-rope system resulted in the two largest flares in Solar Cycle 24.Comment: 10 pages, 8 figures. To be published in A&

    Provenance analysis for instagram photos

    Get PDF
    As a feasible device fingerprint, sensor pattern noise (SPN) has been proven to be effective in the provenance analysis of digital images. However, with the rise of social media, millions of images are being uploaded to and shared through social media sites every day. An image downloaded from social networks may have gone through a series of unknown image manipulations. Consequently, the trustworthiness of SPN has been challenged in the provenance analysis of the images downloaded from social media platforms. In this paper, we intend to investigate the effects of the pre-defined Instagram images filters on the SPN-based image provenance analysis. We identify two groups of filters that affect the SPN in quite different ways, with Group I consisting of the filters that severely attenuate the SPN and Group II consisting of the filters that well preserve the SPN in the images. We further propose a CNN-based classifier to perform filter-oriented image categorization, aiming to exclude the images manipulated by the filters in Group I and thus improve the reliability of the SPN-based provenance analysis. The results on about 20, 000 images and 18 filters are very promising, with an accuracy higher than 96% in differentiating the filters in Group I and Group II

    Recent advances in the ITO/InP solar cell

    Get PDF
    It was demonstrated that Indium Tin Oxide (ITO)/InP solar cells can now be made on as-received p(-) bulk substrates which are of nearly equal quality to those which could previously only be made on epitaxially grown p(-) InP base layers. Although this advancement is due in part to both increases in substrate quality and a better understanding of back contact formation, it appears that the passivation/compensation effects resulting from having H2 in the sputtering gas tends to reduce significantly the performance differences previously observed between these two substrates. It is shown that since high efficiency ITO/InP cells can be made from as-received substrates, and since the type conversion process is not highly spatially dependent, large area ITO/InP cells (4 sq cm) with efficiencies approaching 17 percent (Global) can be made. Furthermore, the measured open circuit voltages (V sub OC) and quantum efficiencies (QEs) from these large cells suggest that, when they are processed using optimum grid designs, the efficiencies will be nearly equal to that of the smaller cells thus far produced. It has been shown, through comparative experiments involving ITO/InP and IO/InP cells, that Sn may not be the major cause of type conversion of the InP surface and thus further implies that the ITO may not be an essential element in this type of device. Specifically, very efficient photovoltaic solar cells were made by sputtering (Sn free) In2O3 showing that type conversion and subsequent junction formation will occur even in the absence of the sputtered SN species. The result suggests that sputter damage may indeed be the important mechanism(s) of type conversion. Finally, an initial study of the stability of the ITO/InP cell done over the course of about one year has indicated that the J(sub SC) (short circuit current) and the fill factor (FF) are measurably stable within experimental certainty

    Insulator-metal transition shift related to magnetic polarons in La0.67-xYxCa0.33MnO3

    Full text link
    The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3 (0 <= x <= 0.14) system. It was found that the transition temperature Tp almost linearly moves to higher temperature as H increases. Electron spin resonance confirms that above Tp, there exist ferromagnetic clusters. From the magnetic polaron point of view, the shift of Tp vs. H was understood, and it was estimated that the size of the magnetic polaron is of 9.7~15.4 angstrom which is consistent with the magnetic correlation length revealed by the small-angle neutron-scattering technique. The transport properties at temperatures higher than Tp conform to the variable-range hopping mechanism.Comment: 22 pages, 6 figures, pdf, to be published in Euro. Phys. J.
    corecore