657 research outputs found

    Lunar soil engineering and engineering geology, July 1-31, 1967

    Get PDF
    Lunar soil and rock program in support of lunar exploratio

    Strain-stiffening in random packings of entangled granular chains

    Full text link
    Random packings of granular chains are presented as a model polymer system to investigate the contribution of entanglements to strain-stiffening in the absence of Brownian motion. The chain packings are sheared in triaxial compression experiments. For short chain lengths, these packings yield when the shear stress exceeds a the scale of the confining pressure, similar to packings of spherical particles. In contrast, packings of chains which are long enough to form loops exhibit strain-stiffening, in which the effective stiffness of the material increases with strain, similar to many polymer materials. The latter packings can sustain stresses orders-of-magnitude greater than the confining pressure, and do not yield until the chain links break. X-ray tomography measurements reveal that the strain-stiffening packings contain system-spanning clusters of entangled chains.Comment: 4 pages, 4 figures. submitted to Physical Review Letter

    Bridge distress caused by approach embankment settlement

    Get PDF
    Surtees Bridge, which carries the A66(T) over the River Tees near Thornaby-on-Tees in the UK, has been showing signs of distress that predate its opening in 1981. Subsequent investigations have shown that the bridge distress is related to unexpectedly large settlement of the eastern approach embankment. Recent ground investigations prompted by a proposed widening of the river crossing have produced many new data on the alluvial deposits underlying the site, and explain why embankment settlement was so much larger than originally anticipated. Comparison of the geotechnical parameters obtained from the original and more recent ground investigations suggests that the original investigation significantly underestimated the thickness of an alluvial clay layer underlying the site, and that its coefficient of consolidation was overestimated. Settlement analyses using geotechnical data from the original ground investigations predict moderate embankment settlements occurring principally during construction. Settlement analyses based on all the available data predict far larger embankment settlements occurring over extended time periods. The latter analyses predict an embankment settlement similar to that observed and of sufficient magnitude to cause the observed lateral displacement of the bridge due to lateral loading of its piled foundation

    The Pure Virtual Braid Group Is Quadratic

    Full text link
    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a sufficient criterion (called the PVH Criterion) for grK to be quadratic. When K is the group algebra of a group G, quadraticity is known to be equivalent to the existence of a (not necessarily homomorphic) universal finite type invariant for G. Thus the PVH Criterion also implies the existence of such a universal finite type invariant for the group G. We apply the PVH Criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic, and hence that these groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies corrected, reflecting suggestions made by the referee of the published version of the pape

    Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    Get PDF
    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10[superscript 8] to 2.2 × 10[superscript 10] molec cm[superscript −3] over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10[superscript 6] to 2 × 10[superscript 7] molec cm[superscript −3] over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10[superscript 11] and 2 × 10[superscript 11] molec cm[superscript −3] s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.National Science Foundation (U.S.). Atmospheric Chemistry Program (Grant AGS-1056225)National Science Foundation (U.S.). Atmospheric Chemistry Program (Grant AGS-1245011

    Light emission from a scanning tunneling microscope: Fully retarded calculation

    Full text link
    The light emission rate from a scanning tunneling microscope (STM) scanning a noble metal surface is calculated taking retardation effects into account. As in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev. B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric properties of tip and sample are described by experimentally measured dielectric functions. The calculations are based on exact diffraction theory through the vector equivalent of the Kirchoff integral. The present results are qualitatively similar to those of the non-retarded calculations. The light emission spectra have pronounced resonance peaks due to the formation of a tip-induced plasmon mode localized to the cavity between the tip and the sample. At a quantitative level, the effects of retardation are rather small as long as the sample material is Au or Cu, and the tip consists of W or Ir. However, for Ag samples, in which the resistive losses are smaller, the inclusion of retardation effects in the calculation leads to larger changes: the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These changes improve the agreement with experiment. For a Ag sample and an Ir tip, the quantum efficiency is ≈\approx 10−4^{-4} emitted photons in the visible frequency range per tunneling electron. A study of the energy dissipation into the tip and sample shows that in total about 1 % of the electrons undergo inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear in Phys. Rev. B (15 October 1998

    Mesoscopic Capacitors: A Statistical Analysis

    Full text link
    The capacitance of mesoscopic samples depends on their geometry and physical properties, described in terms of characteristic times scales. The resulting ac admittance shows sample to sample fluctuations. Their distribution is studied here -through a random-matrix model- for a chaotic cavity capacitively coupled to a backgate: it is observed from the distribution of scattering time delays for the cavity, which is found analytically for the orthogonal, unitary, and symplectic universality classes, one mode in the lead connecting the cavity to the reservoir and no direct scattering. The results agree with numerical simulations.Comment: 4 pages (Revtex), 4 PS figures. Minor corrections. New e-mail address: [email protected] [email protected] e-mail address: [email protected]

    Periodic and Aperiodic Bunching in the Addition Spectra of Quantum Dot

    Full text link
    We study electron addition spectra of quantum dots in a broad range of electron occupancies starting from the first electron. Spectra for dots containing <200 electrons reveal a surprising feature. Electron additions are not evenly spaced in gate voltage. Rather, they group into bunches. With increasing electron number the bunching evolves from occurring randomly to periodically at about every fifth electron. The periodicity of the bunching and features in electron tunneling rates suggest that the bunching is associated with electron additions into spatially distinct regions within the dots.Comment: 4 pages, 2 figures. Submitted to PR

    Zero Frequency Current Noise for the Double Tunnel Junction Coulomb Blockade

    Full text link
    We compute the zero frequency current noise numerically and in several limits analytically for the coulomb blockade problem consisting of two tunnel junctions connected in series. At low temperatures over a wide range of voltages, capacitances, and resistances it is shown that the noise measures the variance in the number of electrons in the region between the two tunnel junctions. The average current, on the other hand, only measures the mean number of electrons. Thus, the noise provides additional information about transport in these devices which is not available from measuring the current alone.Comment: 33 pages, 10 figure
    • …
    corecore