4,201 research outputs found
Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates
We apply a recently developed method combining first principles based Wannier
functions with solutions to the Bogoliubov-de Gennes equations to the problem
of interpreting STM data in cuprate superconductors. We show that the observed
images of Zn on the surface of BiSrCaCuO can only be understood
by accounting for the tails of the Cu Wannier functions, which include
significant weight on apical O sites in neighboring unit cells. This
calculation thus puts earlier crude "filter" theories on a microscopic
foundation and solves a long standing puzzle. We then study quasiparticle
interference phenomena induced by out-of-plane weak potential scatterers, and
show how patterns long observed in cuprates can be understood in terms of the
interference of Wannier functions above the surface. Our results show excellent
agreement with experiment and enable a better understanding of novel phenomena
in the cuprates via STM imaging.Comment: 5 pages, 5 figures, published version (Supplemental Material: 5
pages, 11 figures) for associated video file, see
http://itp.uni-frankfurt.de/~kreisel/QPI_BSCCO_BdG_p_W.mp
Evolution of Fermion Pairing from Three to Two Dimensions
We follow the evolution of fermion pairing in the dimensional crossover from
3D to 2D as a strongly interacting Fermi gas of Li atoms becomes confined
to a stack of two-dimensional layers formed by a one-dimensional optical
lattice. Decreasing the dimensionality leads to the opening of a gap in
radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The
measured binding energy of fermion pairs closely follows the theoretical
two-body binding energy and, in the 2D limit, the zero-temperature mean-field
BEC-BCS theory.Comment: 5 pages, 4 figure
Long range magnetic ordering in NaIrO
We report a combined experimental and theoretical investigation of the
magnetic structure of the honeycomb lattice magnet NaIrO, a strong
candidate for a realization of a gapless spin-liquid. Using resonant x-ray
magnetic scattering at the Ir L-edge, we find 3D long range
antiferromagnetic order below T=13.3 K. From the azimuthal dependence of
the magnetic Bragg peak, the ordered moment is determined to be predominantly
along the {\it a}-axis. Combining the experimental data with first principles
calculations, we propose that the most likely spin structure is a novel
"zig-zag" structure
Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A_2IrO_3
Combining thermodynamic measurements with theoretical density functional and
thermodynamic calculations we demonstrate that the honeycomb lattice iridates
A2IrO3 (A = Na, Li) are magnetically ordered Mott insulators where the
magnetism of the effective spin-orbital S = 1/2 moments can be captured by a
Heisenberg-Kitaev (HK) model with Heisenberg interactions beyond
nearest-neighbor exchange. Experimentally, we observe an increase of the
Curie-Weiss temperature from \theta = -125 K for Na2IrO3 to \theta = -33 K for
Li2IrO3, while the antiferromagnetic ordering temperature remains roughly the
same T_N = 15 K for both materials. Using finite-temperature functional
renormalization group calculations we show that this evolution of \theta, T_N,
the frustration parameter f = \theta/T_N, and the zig-zag magnetic ordering
structure suggested for both materials by density functional theory can be
captured within this extended HK model. Combining our experimental and
theoretical results, we estimate that Na2IrO3 is deep in the magnetically
ordered regime of the HK model (\alpha \approx 0.25), while Li2IrO3 appears to
be close to a spin-liquid regime (0.6 < \alpha < 0.7).Comment: Version accepted for publication in PRL. Additional DFT and
thermodynamic calculations have been included. 6 pages of supplementary
material include
Temperature dependent d-d excitations in manganites probed by resonant inelastic x-ray scattering
We report the observation of temperature dependent electronic excitations in
various manganites utilizing resonant inelastic x-ray scattering (RIXS) at the
Mn K-edge. Excitations were observed between 1.5 and 16 eV with temperature
dependence found as high as 10 eV. The change in spectral weight between 1.5
and 5 eV was found to be related to the magnetic order and independent of the
conductivity. On the basis of LDA+U and Wannier function calculations, this
dependence is associated with intersite d-d excitations. Finally, the
connection between the RIXS cross-section and the loss function is addressed.Comment: 5 pages, 5 figure
Universal quasiparticle decoherence in hole- and electron-doped high-Tc cuprates
We use angle-resolved photoemission to unravel the quasiparticle decoherence
process in the high- cuprates. The coherent band is highly renormalized,
and the incoherent part manifests itself as a nearly vertical ``dive'' in the
- intensity plot that approaches the bare band bottom. We find that the
coherence-incoherence crossover energies in the hole- and electron-doped
cuprates are quite different, but scale to their corresponding bare bandwidth.
This rules out antiferromagnetic fluctuations as the main source for
decoherence. We also observe the coherent band bottom at the zone center, whose
intensity is strongly suppressed by the decoherence process. Consequently, the
coherent band dispersion for both hole- and electron-doped cuprates is
obtained, and is qualitatively consistent with the framework of Gutzwiller
projection.Comment: 4 pages, 4 figure
Molecular Evolution of the Substrate Utilization Strategies and Putative Virulence Factors in Mosquito-Associated Spiroplasma Species
Comparative genomics provides a powerful tool to characterize the genetic differences among species that may be linked to their phenotypic variations. In the case of mosquito-associated Spiroplasma species, such approach is useful for the investigation of their differentiations in substrate utilization strategies and putative virulence factors. Among the four species that have been assessed for pathogenicity by artificial infection experiments, Spiroplasma culicicola and S. taiwanense were found to be pathogenic, whereas S. diminutum and S. sabaudiense were not. Intriguingly, based on the species phylogeny, the association with mosquito hosts and the gain or loss of pathogenicity in these species appears to have evolved independently. Through comparison of their complete genome sequences, we identified the genes and pathways that are shared by all or specific to one of these four species. Notably, we found that a glycerol-3-phosphate oxidase gene (glpO) is present in S. culicicola and S. taiwanense but not in S. diminutum or S. sabaudiense. Because this gene is involved in the production of reactive oxygen species and has been demonstrated as a major virulence factor in Mycoplasma, this distribution pattern suggests that it may be linked to the observed differences in pathogenicity among these species as well. Moreover, through comparative analysis with other Spiroplasma, Mycoplasma, and Mesoplasma species, we found that the absence of glpO in S. diminutum and S. sabaudiense is best explained by independent losses. Finally, our phylogenetic analyses revealed possible recombination of glpO between distantly related lineages and local rearrangements of adjacent genes
Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas
We have observed the superfluid phase transition in a strongly interacting
Fermi gas via high-precision measurements of the local compressibility, density
and pressure down to near-zero entropy. Our data completely determine the
universal thermodynamics of strongly interacting fermions without any fit or
external thermometer. The onset of superfluidity is observed in the
compressibility, the chemical potential, the entropy, and the heat capacity. In
particular, the heat capacity displays a characteristic lambda-like feature at
the critical temperature of . This is the first clear
thermodynamic signature of the superfluid transition in a spin-balanced atomic
Fermi gas. Our measurements provide a benchmark for many-body theories on
strongly interacting fermions, relevant for problems ranging from
high-temperature superconductivity to the equation of state of neutron stars.Comment: 11 pages, 8 figure
- …