35,103 research outputs found

    A new root-knot nematode, Meloidogyne moensi n. sp. (Nematoda : Meloidogynidae), parasitizing Robusta coffee from Western Highlands, Vietnam

    Get PDF
    A new root-knot nematode, parasitizing Robusta coffee in Dak Lak Province, Western Highlands of Vietnam, is described as Meloidogyne moensi n. sp. Morphological and molecular analyses demonstrated that this species differs clearly from other previously described root-knot nematodes. Morphologically, the new species is characterized by a swollen body of females with a small posterior protuberance that elongated from ovoid to saccate; perineal patterns with smooth striae, continuous and low dorsal arch; lateral lines marked as a faint space or linear depression at junction of the dorsal and ventral striate; distinct phasmids; perivulval region free of striae; visible and wide tail terminus surrounding by concentric circles of striae; medial lips of females in dumbbell-shaped and slightly raised above lateral lips; female stylet is normally straight with posteriorly sloping stylet knobs; lip region of second stage juvenile (J2) is not annulated; medial lips and labial disc of J2 formed dumbbell shape; lateral lips are large and triangular; tail of J2 is conoid with rounded unstriated tail tip; distinct phasmids and hyaline; dilated rectum. Meloidogyne moensi n. sp. is most similar to M. africana, M. ottersoni by prominent posterior protuberance. Results of molecular analysis of rDNA sequences including the D2-D3 expansion regions of 28S rDNA, COI, and partial COII/16S rRNA of mitochondrial DNA support for the new species status

    Simulation of decelerating landing approaches on an externally blown flap STOL transport airplane

    Get PDF
    A fixed-base simulator program was conducted to define the problems and methods for solution associated with performing decelerating landing approaches on a representative STOL transport having a high wing and equipped with an external-flow jet flap in combination with four high-bypass-ratio fan-jet engines. Real-time digital simulation techniques were used. The computer was programed with equations of motion for six degrees of freedom and the aerodynamic inputs were based on measured wind-tunnel data. The pilot's task was to capture the localizer and the glide slope and to maintain them as closely as possible while decelerating from an initial airspeed of 140 knots to a final airspeed of 75 knots, while under IFR conditions

    Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane

    Get PDF
    A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions

    Control-system techniques for improved departure/spin resistance for fighter aircraft

    Get PDF
    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability

    Coherent coupling between surface plasmons and excitons in semiconductor nanocrystals

    Full text link
    We present an experimental demonstration of strong coupling between a surface plasmon propagating on a planar silver substrate, and the lowest excited state of CdSe nanocrystals. Variable-angle spectroscopic ellipsometry measurements demonstrated the formation of plasmon-exciton mixed states, characterized by a Rabi splitting of \sim 82 meV at room temperature. Such a coherent interaction has the potential for the development of plasmonic non-linear devices, and furthermore, this system is akin to those studied in cavity quantum electrodynamics, thus offering the possibility to study the regime of strong light-matter coupling in semiconductor nanocrystals at easily accessible experimental conditions.Comment: 12 pages, 4 figure

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    Get PDF
    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    Get PDF
    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D

    Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability

    Get PDF
    A real-time piloted simulation was conducted to evaluate the high-angle-of-attack characteristics of a fighter configuration based on wind-tunnel testing of the F-16, with particular emphasis on the effects of various levels of relaxed longitudinal static stability. The aerodynamic data used in the simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative low-speed combat maneuvering. Results of the investigation show that the airplane with the basic control system was resistant to the classical yaw departure; however, it was susceptible to pitch departures induced by inertia coupling during rapid, large-amplitude rolls at low airspeed. The airplane also exhibited a deep-stall trim which could be flown into and from which it was difficult to recover. Control-system modifications were developed which greatly decreased the airplane susceptibility to the inertia-coupling departure and which provided a reliable means for recovering from the deep stall

    Chemical analysis by X-ray spectroscopy near phase transitions in the solid state

    Get PDF
    The methods discussed in this work show that the types of changes which may be observed, by precise XAS measurements of Absorbance A versus temperature, across a phase transition are: the changes in the relaxation time of the final states due to fluctuations near a phase transition; the detection of the anomalous Bragg condition coupled to phonon modes XAS enhancement that identifies the temperature interval where the phonon modes are active, the symmetry changes which introduce new allowed transitions to finite states below an element edge, near Tc indicate what symmetry changes occur, and the method of XTDAFST0 = XAFS(T) - XAFS(T0), allows the precise measurement of the progressive changes in the Debye-Waller factor versus T near a phase transition, and identify (when no other structural changes occur, except in the vibrational modes of a specific bond) the bond responsible for the transition. The methods have been applied to the superconducting transition in layer cuprates and the metal to insulator transition in NiS2-xSex

    Ground-based and in-flight simulator studies of low-speed handling characteristics of two supersonic cruise transport concepts

    Get PDF
    Conventional and powered lift concepts for supersonic approach and landing tasks are considered. Results indicated that the transport concepts had unacceptable low-speed handling qualities with no augmentation, and that in order to achieve satisfactory handling qualities, considerable augmentation was required. The available roll-control power was acceptable for the powered-lift concept
    corecore