9,656 research outputs found

    Results of Millikan Library Forced Vibration Testing

    Get PDF
    This report documents an investigation into the dynamic properties of Millikan Library under forced excitation. On July 10, 2002, we performed frequency sweeps from 1 Hz to 9.7 Hz in both the East-West (E-W) and North-South (N-S) directions using a roof level vibration generator. Natural frequencies were identified at 1.14 Hz (E-W fundamental mode), 1.67 Hz (N-S fundamental mode), 2.38 Hz (Torsional fundamental mode), 4.93 Hz (1st E-Wovertone), 6.57 Hz (1st Torsional overtone), 7.22 Hz (1st N-S overtone), and at 7.83 Hz (2nd E-Wovertone). The damping was estimated at 2.28% for the fundamental E-W mode and 2.39% for the N-S fundamental mode. On August 28, 2002, a modal analysis of each natural frequency was performed using the dense instrumentation network located in the building. For both the E-W and N-S fundamental modes, we observe a nearly linear increase in displacement with height, except at the ground floor which appears to act as a hinge. We observed little basement movement for the E-W mode, while in the N-S mode 30% of the roof displacement was due to basement rocking and translation. Both the E-W and N-S fundamental modes are best modeled by the first mode of a theoretical bending beam. The higher modes are more complex and not well represented by a simple structural system

    Finite temperature superfluid density in very underdoped cuprates

    Full text link
    The combination of a large superconducting gap, low transition temperature, and quasi two-dimensionality in strongly underdoped high temperature superconductors severely constrains the behavior of the ab-plane superfluid density \rho with temperature T. In particular, we argue that the contribution of nodal quasiparticles to \rho(T) is essential to account both for the amplitude of, and the recently observed deviations from, the Uemura scaling. A relation between T_c and \rho(0) which combines the effects of quasiparticle excitations at low temperatures and of vortex fluctuations near the critical temperature is proposed and discussed in light of recent experiments.Comment: 5 RevTex pages, 4 figures (one new); more discussion and comparison with experiment; version to appear in Phys. Rev.

    Probing the Interstellar Medium of External Galaxies Using Quasar Absorption Lines: the 3C 232/NGC 3067 System

    Get PDF
    Quasar absorption lines offer unique opportunities to probe the interstellar medium of external galaxies. Researchers present new optical and UV absorption line spectroscopy of the quasar 3C232 (z=0.55) revealing new detail in the foreground absorption system due to the bright, spiral galaxy NGC 3067 (cz=1420 km/s). Specifically, the spectra show evidence for two and possibly three separate absorption components in CaII and Na I spanning approx. 150 km/s. The original HI detection of Haschick and Burke (1975) corresponds to the strongest of these metal systems which exhibits doublet ratios consistent with saturation in both CaII and Na I. Due to the recent detection in HI emission of a tidal tail or finger of HI extending from the western edge of NGC 3067 through the position of 3C 232 (Carilli, van Gorkom and Stocke, 1989), the morphology of the HI absorber is now known and is not either a warped disk nor a spherical halo as had been proposed. New deep continuum and H alpha imaging provides a sensitive upper limit on the the ionizing continuum impinging upon this cloud (and thus a limit on the intensity of the extragalactic ionizing radiation field). Together with the observed UV spectrum of 3C 232, the optical emission line ratios and the deep H alpha imaging set a minimum distance between the quasar and the HI cloud disregarding redshift information. This limit strains the non-cosmological redshift interpretation for 3C 232 -- and this quasar is one of the original 5 3C quasars found to be too close to NGC galaxies as if by chance (Burbidge, Burbidge, Solomon and Strittmatter, 1972)

    A knowledge-based approach to configuration layout, justification, and documentation

    Get PDF
    The design, development, and implementation is described of a prototype expert system which could aid designers and system engineers in the placement of racks aboard modules on Space Station Freedom. This type of problem is relevant to any program with multiple constraints and requirements demanding solutions which minimize usage of limited resources. This process is generally performed by a single, highly experienced engineer who integrates all the diverse mission requirements and limitations, and develops an overall technical solution which meets program and system requirements with minimal cost, weight, volume, power, etc. This system architect performs an intellectual integration process in which the underlying design rationale is often not fully documented. This is a situation which lends itself to an expert system solution for enhanced consistency, thoroughness, documentation, and change assessment capabilities

    Observations of HONO by laser-induced fluorescence at the South Pole during ANTCI 2003

    Get PDF
    Observations of nitrous acid (HONO) by laser-induced fluorescence (LIF) at the South Pole taken during the Antarctic Troposphere Chemistry Investigation (ANTCI), which took place over the time period of Nov. 15, 2003 to Jan. 4, 2004, are presented here. The median observed mixing ratio of HONO 10 m above the snow was 5.8 pptv (mean value 6.3 pptv) with a maximum of 18.2 pptv on Nov 30th, Dec 1st, 3rd, 15th, 17th, 21st, 22nd, 25th, 27th and 28th. The measurement uncertainty is ±35%. The LIF HONO observations are compared to concurrent HONO observations performed by mist chamber/ion chromatography (MC/IC). The HONO levels reported by MC/IC are about 7.2 ± 2.3 times higher than those reported by LIF. Citation: Liao, W., A. T. Case, J. Mastromarino, D. Tan, and J. E. Dibb (2006), Observations of HONO by laser-induced fluorescence at the South Pole during ANTCI 2003, Geophys. Res. Lett., 33, L09810, doi:10.1029/2005GL025470

    A Knowledge-Based Approach to Configuration Layout, Justification, and Documentation

    Get PDF
    The design, development, and implementation of a prototype expert system which could aid designers and system engineers in the placement of racks aboard modules on the Space Station Freedom are described. This type of problem is relevant to any program with multiple constraints and requirements demanding solutions which minimize usage of limited resources. This process is generally performed by a single, highly experienced engineer who integrates all the diverse mission requirements and limitations, and develops an overall technical solution which meets program and system requirements with minimal cost, weight, volume, power, etc. This system architect performs an intellectual integration process in which the underlying design rationale is often not fully documented. This is a situation which lends itself to an expert system solution for enhanced consistency, thoroughness, documentation, and change assessment capabilities

    Inspection Of Spray On Foam Insulation (SOFI) Using and Microwave and Millimeter Wave Synthetic Aperture Focusing and Holography

    Get PDF
    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels [1]. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch [2,3]. These methods are capable of producing relatively high-resolution images of the interior of SOFI. Although effective, there are some advantages in using synthetic focusing methods as opposed to real focusing methods such as reduced probe size, the ability to determine depth from multiple views, and the ability to slice images due to sufficient range resolution. To this end, synthetic aperture focusing techniques (SAFT) were first pursued for this purpose and later wide-band microwave holography was implemented [4-7]. This paper presents the results of this investigation using frequency domain synthetic aperture focusing technique (FD-SAFT) and wide-band microwave holography methods illustrating their potential capabilities for inspecting the space shuttle's SOFI at millimeter wave frequencies

    Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    Get PDF
    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation
    corecore