research

Probing the Interstellar Medium of External Galaxies Using Quasar Absorption Lines: the 3C 232/NGC 3067 System

Abstract

Quasar absorption lines offer unique opportunities to probe the interstellar medium of external galaxies. Researchers present new optical and UV absorption line spectroscopy of the quasar 3C232 (z=0.55) revealing new detail in the foreground absorption system due to the bright, spiral galaxy NGC 3067 (cz=1420 km/s). Specifically, the spectra show evidence for two and possibly three separate absorption components in CaII and Na I spanning approx. 150 km/s. The original HI detection of Haschick and Burke (1975) corresponds to the strongest of these metal systems which exhibits doublet ratios consistent with saturation in both CaII and Na I. Due to the recent detection in HI emission of a tidal tail or finger of HI extending from the western edge of NGC 3067 through the position of 3C 232 (Carilli, van Gorkom and Stocke, 1989), the morphology of the HI absorber is now known and is not either a warped disk nor a spherical halo as had been proposed. New deep continuum and H alpha imaging provides a sensitive upper limit on the the ionizing continuum impinging upon this cloud (and thus a limit on the intensity of the extragalactic ionizing radiation field). Together with the observed UV spectrum of 3C 232, the optical emission line ratios and the deep H alpha imaging set a minimum distance between the quasar and the HI cloud disregarding redshift information. This limit strains the non-cosmological redshift interpretation for 3C 232 -- and this quasar is one of the original 5 3C quasars found to be too close to NGC galaxies as if by chance (Burbidge, Burbidge, Solomon and Strittmatter, 1972)

    Similar works