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[1] Observations of nitrous acid (HONO) by laser-induced
fluorescence (LIF) at the South Pole taken during the
Antarctic Troposphere Chemistry Investigation (ANTCI),
which took place over the time period of Nov. 15, 2003 to
Jan. 4, 2004, are presented here. The median observed
mixing ratio of HONO 10 m above the snow was 5.8 pptv
(mean value 6.3 pptv) with a maximum of 18.2 pptv on Nov
30th, Dec 1st, 3rd, 15th, 17th, 21st, 22nd, 25th, 27th and
28th. The measurement uncertainty is ±35%. The LIF
HONO observations are compared to concurrent HONO
observa t ions per formed by mis t chamber / ion
chromatography (MC/IC). The HONO levels reported by
MC/IC are about 7.2 ± 2.3 times higher than those reported
by LIF. Citation: Liao, W., A. T. Case, J. Mastromarino, D. Tan,

and J. E. Dibb (2006), Observations of HONO by laser-induced

fluorescence at the South Pole during ANTCI 2003, Geophys. Res.

Lett., 33, L09810, doi:10.1029/2005GL025470.

1. Introduction

[2] A series of field campaigns in polar regions have
spurred intense interest in the photochemistry occurring in
snow. In winter at high latitudes in the Northern Hemi-
sphere, snow can cover more than 50% of landmasses
[Robinson et al., 1993]. Because snow has a large sur-
face-to-volume ratio, it can remove atmospheric trace gases
from the gas phase by adsorption, thus modifying atmo-
spheric composition. Adsorbed gases and particulate matter
can undergo heterogeneous photochemistry to release reac-
tive trace gases back to the atmosphere. In case the snow-
flakes grow over co-condensation of trace gases, the snow is
a potential atmospheric source through releasing the super-
saturated trace gases or through sublimation. HONO plays
an important role in the atmosphere due to its photo-
dissociation by UV radiation into hydroxyl (OH) and nitric
oxide (NO) radicals; a number of measurements [Dibb et
al., 2002; Zhou et al., 2001] report elevated HONO con-
centrations, sometimes much higher than can be accounted
for in photochemistry models. The high levels of HONO
reported often lead to a dramatic over-prediction of HOx

[Davis et al., 2004], and sometimes NOx [Dibb et al., 2004],
which are difficult to reconcile with concurrent measure-
ments of OH, HO2 and NO. These results raised possible
missing sinks for HOx and NOx or, alternatively, problems

with the HONO measurements. Quantifying the amount of
HONO emitted by snowpack is important for the global
photochemistry budget and a deeper understanding of the
heterogeneous processes involving snowpack and aerosol
particles is necessary.
[3] In principle, heterogeneous processes can deplete the

concentration of gas phase species through adsorption and
subsequently increase their concentrations through removal
processes from reservoir species. Adsorption on ice may be
an important removal process of HNO3, of some importance
for HONO and peroxyacetyl nitrate (PAN), but apparently
irrelevant for NO and NO2 [Bartels-Rausch et al., 2002]. As
gas-snow partitioning changes with temperature, emission
from or deposition to the snowpack may change with strong
temperature changes. Temperature changes are generally
associated with changes in meteorological conditions:
changes in wind speed and wind direction may affect
snowpack ventilation and therefore atmospheric concentra-
tions of HONO and other reactive nitrogen species. There
seems to be agreement that the nitrate photolysis within the
snowpack is the dominant origin of NOx and HONO in the
polar atmospheric boundary layer [Honrath et al., 2000].
[4] Because of its short lifetime with respect to photol-

ysis, snowpack emissions of HONO remain confined to a
thin layer near the surface, where HONO can give rise to
significant production of OH radicals in polar regions
[Domine and Shepson, 2002]. Honrath et al. [2002] showed
that the 24-hour average NOx and HONO emission rates at
Summit, Greenland during the summer of 2000 were
approximately 4 times the HNO3 deposition rates, indicat-
ing that NOx export may slowly remove nitrogen from the
boundary layer in summer time. In remote polar regions,
snowpack photochemistry provides a way to remobilize
deposited HNO3, thereby influencing NOx photochemistry.
The Investigation of Sulfur Chemistry in the Antarctic
Troposphere (ISCAT) 1998 and 2000 observed NO levels
exceeding those at other polar sites by nearly an order of
magnitude. On ISCAT 2000, HONO was measured by mist
chamber. However, the observed median HONO concen-
tration of 25 pptv (see Table 1) was too high to reconcile
with models of the HOx and NOx budget [Davis et al.,
2004]. This led to great interest to go back to South Pole to
measure HONO using an alternative technique.
[5] Current HONO measurements are: differential optical

absorption spectroscopy (DOAS) [Alicke et al., 2003] and
laser-induced fluorescence (LIF) [Liao et al., 2006] which
are based on spectroscopy; converting HONO to NO2

� and
analyzing the nitrite by mist chamber/ion chromatography
(MC/IC) [Dibb et al., 2002] or the photometric detection of
an azo dye derivative by long path absorption photometer
(LOPAP) [Heland et al., 2001]; aqueous scrubbing using a
coil sampler followed by 2,4-dinitrophenylhydrazine
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(DNPH) derivatization and determining the complex by
high-performance liquid chromatographic (HPLC) analysis
[Zhou et al., 1999]; and the diffusion-based denuder/ion
chromatography system [Acker et al., 2005].
[6] Here we provide observations from ambient HONO

measurements during ANTCI 2003 in the austral summer.
The Antarctic Troposphere Chemistry Investigation
(ANTCI) is a four year program including two major field
studies (2003 and 2005) in Antarctica. The major science
objectives are to evaluate the physical and chemical pro-
cesses of nitrogen oxides and hydrogen oxides; to compare
boundary layer measurements of South Pole with other
regions of Antarctica; and to investigate the importance
and location of the coast-to-plateau transport of sulfur.

2. Experiments

[7] Ambient measurements were conducted at the Atmo-
spheric Research Observatory (ARO) at South Pole during
ANTCI in November and December of 2003. One face of
the ARO held the in situ experimental probes and faced the
clean air sector, a zone between grid 360-110 degrees
extending 148 km from South Pole and 2 km above the
snow surface. The clean air sector has a very long fetch into
the mean katabatic flow from the Antarctic Plateau.
[8] The photo fragmentation/laser-induced fluorescence

(PF-LIF) technique was used to measure atmospheric
HONO 10 meters above the surface. Figure 1 presents a
schematic illustration of the PF-LIF HONO detection sys-
tem. A detailed description of the method is provided by
Liao et al. [2006]. Briefly, ambient air is drawn into the
sample cell at 30 L/min through a 1/200 I.D. teflon tube �2.5
m long extending about 10 cm outside the wall of the ARO
facing the clean air sector. The first 30 cm of the inlet tube
was maintained at �297 K. The residence time in the inlet
was �0.5 s. There was no significant difference in signal
whether the inlet heater was turned off or not, indicating that
inlet surface reactions were not important in the very dry
conditions found in ANTCI. HONO in the sample cell is
photo fragmented at 355 nm with the third harmonic of a
YAG laser and the generated OH radical is probed at 282
nm; the photolysis beam alternately precedes and follows
the OH probe beam, automatically accounting for ambient
as well as any instrument-generated OH; the excited state
OH fluorescence at 309 nm is detected by photomultiplier
tube. This detection scheme is direct, fast, and free from
identifiable interferences, including hydrogen peroxide,
nitric acid, and pernitric acid. The system was calibrated
by standard addition every 3 hours. A 1 slpm flow of dry
nitrogen was passed over constant mixing of NaNO2 and
H2SO4 solutions to generate standard additions of HONO
(typically 12 to 50 pptv). The HONO standard addition
concentration was verified by laboratory UV/VIS differen-

tial optical absorption spectroscopy. The 2-s detection limit
of the technique was typically 2–3 parts per trillion by
volume (pptv) for HONO, with a sample integration time of
10 minutes. The relative uncertainty was estimated to be
about ±35%, driven largely by calibration uncertainty and
laser power fluctuations. Measurements were typically
taken for the 12 hours per day that the inlet was over sunlit
snow.

3. Results

[9] HONO was measured in the ARO on Nov 30th, Dec
1st, 3rd, 15th, 17th, 21st, 22nd, 25th, 27th and 28th (Figure
2 (top)). The median mixing ratio of HONO 10 m above the
snow in this period was 5.8 pptv (6.3 pptv mean), reaching a
maximum value of 18.2 pptv on Dec 1st. We see the highest
concentrations at the end of November; a period marked by
cold temperatures, and a shallow boundary layer. NO levels
(shown in Figure 2 and taken to be representative of other
surface-emitted species) measured in the ARO at this time
are also highly elevated, indicating surface emissions into a
small mixing volume. HONO levels decrease in early
December, when the boundary layer is relatively deep;
NO levels in this time period are relatively low. HONO
levels increase again around December 22nd, a period also
marked by high levels of NO, HNO3, and HNO4. The
HONO levels we report here by LIF are lower than previous
observations reported by MC/IC from ISCAT 2000 [Dibb et
al., 2004] and much lower than concurrent MC/IC measure-
ments (Table 1). Figure 3 shows HONO levels for Dec 1st
showing the typical variability over the 12 hour measure-
ment period. Since there was no night during ANTCI 2003,
diurnal variability is driven largely by wind direction,
presence of cloud cover, and presumably snow-phase
chemistry.
[10] Because NO is both a gas-phase precursor to HONO

and a photolysis product, it may be interesting to compare
the behavior of these two species. Overall, the median
HONO to NO ratio is 2%, except for the last two days
when the ratio increased to 10%. The correlation between
the two, however, is poor (Figure 4). The poor correlation
(r2 = 0.17) is not surprising, however, given that the median
lifetime of NOx at ANTCI was 13 hours, whereas the

Table 1. Comparison of Existing Results of HONO Measure-

ments 10 Meters Above Snow at South Pole, Both MC/IC

Measurements Were Reported by Dibb

2000 Dec 27th
2003 Nov

30th–Dec 1st

MC/IC MC/IC LIF

Median HONO (pptv) 25 55 10

Figure 1. LIF HONO measurement instrumentation
(MOPO: Master Oscillator/Power Oscillator, PMT: Photo-
multiplier Tube, DAS: Data Acquisition System).
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median lifetime for HONO was only 6 minutes. HONO will
be much more sensitive than NO to local conditions and less
sensitive to chemistry upwind. Furthermore, the snow
emission chemistry is complex and involves heterogeneous
processes and interstitial photochemistry. Factors could
influence the HONO source like HNO3 deposition rate, rate
of photolysis of NO3

� and NO2
�, pH of snow, wind speed,

solar radiation etc. If photolysis of nitrate (NO3
�) is the

dominant source of HONO, and the HONO generation is
the secondary step through NO2

�. NO2
� photolysis is con-

siderably faster than that of NO3
�; depending on properties

such as the temperature dependence of the snow-phase
reactions, partitioning and quantum yield of the involved
processes, NO, NO2, or HONO may be dominant products.
It is neither expected nor necessary that the NO/HONO ratio
be fixed.
[11] HONO was also measured by mist chamber/ion

chromatography analysis (MC/IC) of the NO2
� ion by the

University of New Hampshire [Dibb et al., 1994, 2002].
Most of the MC/IC measurements were taken at the snow

surface adjacent to the ARO; however, MC/IC HONO data
for Nov 30th and Dec 1st at 10 m in the ARO are also
available. The MC/IC observed HONO levels at both the
surface and from the ARO are significantly higher than the
PF-LIF observations, and also higher than was reported in
ISCAT 2000. There is no noticeable trend in MC/IC surface
versus 10 m data, at least for the two days MC/IC data are
available from the ARO. Overall, MC/IC HONO data from
ANTCI 2003 were 7.2 ± 2.3 times higher than LIF HONO
data (Figure 5) with no correlation (r2 is 0.017).
[12] At present we do not have a definitive explanation

for the large discrepancy found in ANTCI between mea-
surement techniques. An intercomparison of the two tech-
niques at 10 m was unsuccessful: the median HONO
mixing ratio at 10 m for the intercomparison period by
MC/IC is 55 pptv, while that by LIF is 10 pptv. Exchange
of calibration standards was also unsuccessful: the LIF
calibration source produced interferences for the MC/IC
measurement not observable by LIF, and the MC/IC source
(dissolved nitrite) was not suitable for the gas-phase LIF

Figure 2. Temporal plot of HONO (pptv), NO (pptv), Temperature (K) and Boundary Layer Height (m). Observed HONO
mixing ratio was at 10 m above the snow at South Pole on Nov 30th, Dec 1st, 3rd, 15th, 17th, 21st, 22nd, 25th, 27th and
28th during ANTCI 2003.The highest line in the Boundary Layer Height panel is 180 m, which indicates that data were
collected and analyzed for mixed layer depth but none was found. The maximum range of the sodar deployed was 175 m.

Figure 3. HONO observations on Dec 1st, 2003 10 m
above the snow at South Pole.

Figure 4. Scatterplot of the mixing ratio of HONO versus
NO. The correlation is very poor (r2 = 0.17).
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measurement. It should also be noted that concurrent LIF
and MC/IC HONO data are limited, further complicating a
detailed assessment of the differences. It is possible that the
MC/IC technique might suffer from interference from
HNO4. During the intercomparison period, the MC/IC
HONO observations appeared to track the sum of LIF
HONO and HNO4 as measured by CIMS (S. Sjosted,
personal communication, 2005). We also cannot rule out
the possibility that the LIF measurement was actually less
sensitive than reported. Possible other reasons for this
discrepancy include the different inlets and time scales
used for the two techniques which could result in adsorp-
tion of HONO, heterogeneous hydrolysis of NO2 or posi-
tive interferences from NO2- or other nitrogen oxides, in
particular pernitric acid.

4. Conclusions

[13] The ANTCI 2003 measurements confirm the high
HONO levels observed previously in ISCAT 2000 (Table 1),
although there is significant discrepancy in the HONO
measurements by LIF and MC/IC. Both the LIF and MC/
IC techniques observed higher than expected levels of
HONO; however, the MC/IC observations were higher than
the LIF observations by a factor of 7.2 ± 2.3 in the median.
HONO as measured by both techniques roughly follow NO
levels and scale inversely with boundary layer height. A
number of factors could influence the HONO concentra-
tions observed during ANTCI, including the HNO3 depo-
sition rate, the rate of photolysis of snow-phase NO3

� and
NO2

�, the pH of snow, wind speed, and solar radiation. A
modeling effort (beyond the scope of this observational
paper) is presently underway to understand HONO during

ANTCI, including the possible snow HONO source and the
effect of HONO on HOx.

[14] Acknowledgments. We would like to thank the participants of
the ANTCI 2003 experiment, especially to Fred Eisele and Lee Mauldin for
their constructive suggestions. Funding for this project was received from
the National Science Foundation award ATM 0230246.
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Figure 5. Comparison of different HONO measurements
(UNH: MC/IC; GT: LIF) (r2 = 0.017).
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