5,240 research outputs found

    Study of odd-mass N=82 isotones with realistic effective interactions

    Get PDF
    The microscopic quasiparticle-phonon model, MQPM, is used to study the energy spectra of the odd Z=53−63Z=53 - 63, N=82 isotones. The results are compared with experimental data, with the extreme quasiparticle-phonon limit and with the results of an unrestricted 2s1d0g7/20h11/22s1d0g_{7/2}0h_{11/2} shell model (SM) calculation. The interaction used in these calculations is a realistic two-body G-matrix interaction derived from modern meson-exchange potential models for the nucleon-nucleon interaction. For the shell model all the two-body matrix elements are renormalized by the Q^\hat{Q}-box method whereas for the MQPM the effective interaction is defined by the G-matrix.Comment: Elsevier latex style espart, 26 pages, submitted to Nuclear Physics

    The pedicled omentoplasty and split skin graft (POSSG) for reconstruction of large chest wall defects. A validity study of 34 patients

    Get PDF
    The aim of this study was to evaluate retrospectively the results of pedicled omentoplasty and split skin graft (POSSG) in reconstructing (full thickness) chest wall defects, and to define its role as a palliative procedure for local symptom control. Thirty-four patients with recurrent breast cancer (n = 25), radiation-induced necrosis (n = 5) or sarcoma (n = 4) of the chest wall were selected for the study. All patients underwent curative or palliative chest wall resection with reconstruction by pedicled omentoplasty and split skin graft (POSSG), between 1986 and 1994. Reconstructive outcome, complications, local tumour and symptom control following surgery was measured. The most common complication was shown to be partial necrosis of the omental flap (35%), followed by respiratory problems (26%), facial hernia (26%) and thoracic wound problems (15%), which were mostly treated in a conservative way (68%). The 3-year local tumour-free interval after POSSG in patients curatively treated for breast cancer is 16%. Seventy per cent of the patients who underwent palliative resection had longstanding relief of local pain, bleeding or foetor due to local tumour growth. It can be concluded that large (full thickness) chest wall defects after resection of local recurrence, primary malignancy or osteoradionecrosis of the chest wall can successfully be reconstructed by POSSG. Chest wall resection in patients treated with palliative intention is effective in local symptom control

    Family of Hermitian Low-Momentum Nucleon Interactions with Phase Shift Equivalence

    Full text link
    Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum NN interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions for Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Lambda. Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the LS and several Hermitian low-momentum interactions are compared.Comment: 10 pages, 7 figure

    The location of the broad HI absorption in 3C305: clear evidence for a jet-accelerated neutral outflow

    Full text link
    We present high-spatial resolution 21-cm HI VLA observations of the radio galaxy 3C305 (z=0.041). These new high-resolution data show that the ~1000 km/s broad HI absorption, earlier detected in low-resolution WSRT observations, is occurring against the bright, eastern radio lobe, about 1.6 kpc from the nucleus. We use new optical spectra taken with the WHT to make a detailed comparison of the kinematics of the neutral hydrogen with that of the ionised gas. The striking similarity between the complex kinematics of the two gas phases suggests that both the ionised gas and the neutral gas are part of the same outflow. Earlier studies of the ionised gas had already found evidence for a strong interaction between the radio jet and the interstellar medium at the location of the eastern radio lobe. Our results show that the fast outflow produced by this interaction also contains a component of neutral atomic hydrogen. The most likely interpretation is that the radio jet ionises the ISM and accelerates it to the high outflow velocities observed. Our observations demonstrate that, following this strong jet-cloud interaction, not all gas clouds are destroyed and that part of the gas can cool and become neutral. The mass outflow rate measured in 3C~305 is comparable, although at the lower end of the distribution, to that found in Ultra-Luminous IR galaxies. This suggests that AGN-driven outflows, and in particular jet-driven outflows, can have a similar impact on the evolution of a galaxy as starburst-driven superwinds.Comment: Accepted for publication in A&A. 7 pages, 4 figure

    The disc-dominated host galaxy of FR-I radio source B2 0722+30

    Get PDF
    We present new observational results that conclude that the nearby radio galaxy B2 0722+30 is one of the very few known disc galaxies in the low-redshift Universe that host a classical double-lobed radio source. In this paper we use HI observations, deep optical imaging, stellar population synthesis modelling and emission-line diagnostics to study the host galaxy, classify the Active Galactic Nucleus and investigate environmental properties under which a radio-loud AGN can occur in this system. Typical for spiral galaxies, B2 0722+30 has a regularly rotating gaseous disc throughout which star formation occurs. Dust heating by the ongoing star formation is likely responsible for the high infrared luminosity of the system. The optical emission-line properties of the central region identify a Low Ionization Nuclear Emission-line Region (LINER)-type nucleus with a relatively low [OIII] luminosity, in particular when compared with the total power of the Fanaroff & Riley type-I radio source that is present in this system. This classifies B2 0722+30 as a classical radio galaxy rather than a typical Seyfert galaxy. The environment of B2 0722+30 is extremely HI-rich, with several nearby interacting galaxies. We argue that a gas-rich interaction involving B2 0722+30 is a likely cause for the triggering of the radio-AGN and/or the fact that the radio source managed to escape the optical boundaries of the host galaxy.Comment: To appear in MNRAS (in press); 16 pages, 11 figures. A full-resolution version of this paper is available at http://www.atnf.csiro.au/people/emo004/MNRAS_Emonts_B20722_fullres.pd

    A jet-induced outflow of warm gas in 3C 293

    Get PDF
    Using long slit emission-line spectra we detect a fast outflow of ionized gas, with velocities up to 1000 km/s, in the nearby powerful radio galaxy 3C 293 (z = 0.045). The fast outflow is located about 1 kpc east of the nucleus, in a region of enhanced radio emission due to the presence of a distorted radio jet. We present results that indicate that this fast outflow is caused by a jet-ISM interaction. The kinematics of the outflowing ionized gas are very similar to those of a fast outflow of neutral hydrogen gas in this galaxy, suggesting that both outflows are the result of the same driving mechanism. While the mass of the outflowing ionized gas is about 1 x 10e5 M_sun, the total HI mass involved in the neutral outflow is about 100 times higher (10e7 M_sun). This shows that, despite the high energies that must be involved in driving the outflow, most of the gas remains, or becomes again, neutral. Other outflows of ionized gas, although not as pronounced as in the region of the enhanced radio emission, are also seen in various other regions along the axis of the inner radio jets. The regular kinematics of the emission-line gas along the major axis of the host galaxy reveal a rotating ionized gas disk 30 kpc in extent.Comment: 15 pages, 10 figures. Accepted for publication in MNRAS. A full resolution version can be found at http://www.astro.rug.nl/~emonts/MF268rv.pd

    Effects of Noise on Ecological Invasion Processes: Bacteriophage-mediated Competition in Bacteria

    Full text link
    Pathogen-mediated competition, through which an invasive species carrying and transmitting a pathogen can be a superior competitor to a more vulnerable resident species, is one of the principle driving forces influencing biodiversity in nature. Using an experimental system of bacteriophage-mediated competition in bacterial populations and a deterministic model, we have shown in [Joo et al 2005] that the competitive advantage conferred by the phage depends only on the relative phage pathology and is independent of the initial phage concentration and other phage and host parameters such as the infection-causing contact rate, the spontaneous and infection-induced lysis rates, and the phage burst size. Here we investigate the effects of stochastic fluctuations on bacterial invasion facilitated by bacteriophage, and examine the validity of the deterministic approach. We use both numerical and analytical methods of stochastic processes to identify the source of noise and assess its magnitude. We show that the conclusions obtained from the deterministic model are robust against stochastic fluctuations, yet deviations become prominently large when the phage are more pathological to the invading bacterial strain.Comment: 39 pages, 7 figure

    Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes

    Get PDF
    We study the spectra of neutron-rich oxygen isotopes based on chiral two- and three-nucleon interactions. First, we benchmark our many-body approach by comparing ground-state energies to coupled-cluster results for the same two-nucleon interaction, with overall good agreement. We then calculate bound excited states in 21,22,23O, focusing on the role of three-nucleon forces, in the standard sd shell and an extended sdf7/2p3/2 valence space. Chiral three-nucleon forces provide important one- and two-body contributions between valence neutrons. We find that both these contributions and an extended valence space are necessary to reproduce key signatures of novel shell evolution, such as the N = 14 magic number and the low-lying states in 21O and 23O, which are too compressed with two-nucleon interactions only. For the extended space calculations, this presents first work based on nuclear forces without adjustments. Future work is needed and open questions are discussed.Comment: 6 pages, 4 figures, published versio

    Timescales of merger, starburst and AGN activity in radio galaxy B2 0648+27

    Get PDF
    In this paper we use neutral hydrogen HI and optical spectroscopic observations to compare the timescales of a merger event, starburst episode and radio-AGN activity in the radio galaxy B2 0648+27. We detect a large ring-like structure of HI in emission around the early-type host galaxy of B2 0648+27 (M_HI = 8.5 x 10^9 Msun, diameter = 190 kpc). We interpret this as the result of a major merger that occurred > 1.5 Gyr ago. From modelling optical long-slit spectra we find that a young stellar population of 0.3 Gyr, indicative of a past starburst event, dominates the stellar light throughout the galaxy. The off-set in time between the merger event and the starburst activity in B2 0648+27 suggests that the starburst was triggered in an advanced stage of the merger, which can be explained if the gas-rich progenitor galaxies contained a bulge. Although the exact age of the radio source remains uncertain, there appears to be a significant time-delay between the merger/starburst event and the current episode of radio-AGN activity. We also observe an outflow of emission-line gas in this system, which is likely related to superwinds driven by the stars that formed during the starburst event. We argue that the radio galaxy B2 0648+27 is a link in the evolutionary sequence between Ultra-Luminous Infrared Galaxies (ULIRGs) and genuine early-type galaxies
    • 

    corecore