66,204 research outputs found

    Second-Order Convergence of a Projection Scheme for the Incompressible Navier–Stokes Equations with Boundaries

    Get PDF
    A rigorous convergence result is given for a projection scheme for the Navies–Stokes equations in the presence of boundaries. The numerical scheme is based on a finite-difference approximation, and the pressure is chosen so that the computed velocity satisfies a discrete divergence-free condition. This choice for the pressure and the particular way that the discrete divergence is calculated near the boundary permit the error in the pressure to be controlled and the second-order convergence in the velocity and the pressure to the exact solution to be shown. Some simplifications in the calculation of the pressure in the case without boundaries are also discussed

    Understanding the effects of geometry and rotation on pulsar intensity profiles

    Full text link
    We have developed a method to compute the possible distribution of radio emission regions in a typical pulsar magnetosphere, taking into account the viewing geometry and rotational effects of the neutron star. Our method can estimate the emission altitude and the radius of curvature of particle trajectory as a function of rotation phase for a given inclination angle, impact angle, spin-period, Lorentz factor, field line constant and the observation frequency. Further, using curvature radiation as the basic emission mechanism, we simulate the radio intensity profiles that would be observed from a given distribution of emission regions, for different values of radio frequency and Lorentz factor. We show clearly that rotation effects can introduce significant asymmetries into the observed radio profiles. We investigate the dependency of profile features on various pulsar parameters. We find that the radiation from a given ring of field lines can be seen over a large range of pulse longitudes, originating at different altitudes, with varying spectral intensity. Preferred heights of emission along discrete sets of field lines are required to reproduce realistic pulsar profiles, and we illustrate this for a known pulsar. Finally, we show how our model provides feasible explanations for the origin of core emission, and also for one-sided cones which have been observed in some pulsars.Comment: 21 pages, 11 figures, accepted for publication in MNRA

    The Magnetic Rayleigh-Taylor Instability in Three Dimensions

    Full text link
    We study the magnetic Rayleigh-Taylor instability in three dimensions, with focus on the nonlinear structure and evolution that results from different initial field configurations. We study strong fields in the sense that the critical wavelength l_c at which perturbations along the field are stable is a large fraction of the size of the computational domain. We consider magnetic fields which are initially parallel to the interface, but have a variety of configurations, including uniform everywhere, uniform in the light fluid only, and fields which change direction at the interface. Strong magnetic fields do not suppress instability, in fact by inhibiting secondary shear instabilities, they reduce mixing between the heavy and light fluid, and cause the rate of growth of bubbles and fingers to increase in comparison to hydrodynamics. Fields parallel to, but whose direction changes at, the interface produce long, isolated fingers separated by the critical wavelength l_c, which may be relevant to the morphology of the optical filaments in the Crab nebula.Comment: 14 pages, 9 pages, accepted by Ap

    Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    Get PDF
    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed

    Hubungan Tingkat Pendidikan dengan Preferensi Pemilihan Model Bisnis Toko Online

    Get PDF
    Online store as part of E-commerce from day to day growing rapidly, and increasingly organized according to the grouping\u27s business model E-commerce. Visitors E-commerce demographically divided into several groups one of which is the level of education. This study aims to determine the effect of education on elections E-commerce business model as measured by the number of visits to the site. Correlation analysis was used to measure the effect of the general level of education tersebut.Secara have a strong influence on the selection of E-commerce business model

    On the Stability and Instability of Shock Waves

    Full text link

    Technicolor Models with Color-Singlet Technifermions and their Ultraviolet Extensions

    Full text link
    We study technicolor models in which all of the technifermions are color-singlets, focusing on the case in these fermions transform according to the fundamental representation of the technicolor gauge group. Our analysis includes a derivation of restrictions on the weak hypercharge assignments for the technifermions and additional color-singlet, technisinglet fermions arising from the necessity of avoiding stable bound states with exotic electric charges. Precision electroweak constraints on these models are also discussed. We determine some general properties of extended technicolor theories containing these technicolor sectors.Comment: 17 pages, latex, 2 figure

    Temperature dependent d-d excitations in manganites probed by resonant inelastic x-ray scattering

    Full text link
    We report the observation of temperature dependent electronic excitations in various manganites utilizing resonant inelastic x-ray scattering (RIXS) at the Mn K-edge. Excitations were observed between 1.5 and 16 eV with temperature dependence found as high as 10 eV. The change in spectral weight between 1.5 and 5 eV was found to be related to the magnetic order and independent of the conductivity. On the basis of LDA+U and Wannier function calculations, this dependence is associated with intersite d-d excitations. Finally, the connection between the RIXS cross-section and the loss function is addressed.Comment: 5 pages, 5 figure

    Coefficient of Restitution for Viscoelastic Spheres: The Effect of Delayed Recovery

    Full text link
    The coefficient of normal restitution of colliding viscoelastic spheres is computed as a function of the material properties and the impact velocity. From simple arguments it becomes clear that in a collision of purely repulsively interacting particles, the particles loose contact slightly before the distance of the centers of the spheres reaches the sum of the radii, that is, the particles recover their shape only after they lose contact with their collision partner. This effect was neglected in earlier calculations which leads erroneously to attractive forces and, thus, to an underestimation of the coefficient of restitution. As a result we find a novel dependence of the coefficient of restitution on the impact rate.Comment: 11 pages, 2 figure

    Collective Dynamics of Random Polyampholytes

    Full text link
    We consider the Langevin dynamics of a semi-dilute system of chains which are random polyampholytes of average monomer charge qq and with a fluctuations in this charge of the size Q−1Q^{-1} and with freely floating counter-ions in the surrounding. We cast the dynamics into the functional integral formalism and average over the quenched charge distribution in order to compute the dynamic structure factor and the effective collective potential matrix. The results are given for small charge fluctuations. In the limit of finite qq we then find that the scattering approaches the limit of polyelectrolyte solutions.Comment: 13 pages including 6 figures, submitted J. Chem. Phy
    • …
    corecore