363 research outputs found

    A CLASSIFICATION OF UNREPLICATED FACTORIAL EXPERIMENTS FOR USE WITH THE ANALYSIS OF DETERMINISTIC SIMULATION MODELS

    Get PDF
    Deterministic simulation models are important in agricultural applications and their use is becoming increasingly common. Therefore, statistical procedures that interpret the output and evaluate the performance of deterministic models are necessary. The fact that deterministic computer simulation experiments cannot be replicated provides opportunities for using several procedures applicable to unreplicated factorial experiments. We discuss a classification scheme that selects the correct technique for most deterministic simulation experiments. The value of these techniques is their capability to estimate the experimental error variance for unreplicated computer experiments. Using these estimates of error, model developers and practitioners can more thoroughly analyze their deterministic simulation experiments

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200

    Pion form factor in the Kroll-Lee-Zumino model

    Full text link
    The renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino is used to compute the one-loop vertex corrections to the tree-level, Vector Meson Dominance (VMD) pion form factor. These corrections, together with the known one-loop vacuum polarization contribution, lead to a substantial improvement over VMD. The resulting pion form factor in the space-like region is in excellent agreement with data in the whole range of accessible momentum transfers. The time-like form factor, known to reproduce the Gounaris-Sakurai formula at and near the rho-meson peak, is unaffected by the vertex correction at order O\cal{O}(g_\rpp^2).Comment: Revised version corrects a misprint in Eq.(1

    Crystal-fields in YbInNi4 determined with magnetic form factor and inelastic neutron scattering

    Full text link
    The magnetic form factor of YbInNi4 has been determined via the flipping ratios R with polarized neutron diffraction and the scattering function S(Q,w) was measured in an inelastic neutron scattering experiment. Both experiments were performed with the aim to determine the crystal-field scheme. The magnetic form factor clearly excludes the possibility of a \Gamma7 doublet as the ground state. The inelastic neutron data exhibit two, almost equally strong peaks at 3.2 meV and 4.4 meV which points, in agreement with earlier neutron data, towards a \Gamma8 quartet ground state. Further possibilities like a quasi-quartet ground state are discussed.Comment: 7 pages, 5 figures, 2 tables, submitted to PR

    Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite

    Full text link
    We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a "dead" surface layer is present that is only absorbing photons but does not contribute to the scattering signal.Comment: to appear in Phys. Rev.

    Orbital occupation and magnetic moments of tetrahedrally coordinated iron in CaBaFe4O7

    Full text link
    CaBaFe4O7 is a mixed-valent transition metal oxide having both Fe2+ and Fe3+ ions in tetrahedral coordination. Here we characterize its magnetic properties by magnetization measurements and investigate its local electronic structure using soft x-ray absorption spectroscopy at the Fe L2,3 edges, in combination with multiplet cluster and spin-resolved band structure calculations. We found that the Fe2+ ion in the unusual tetrahedral coordination is Jahn-Teller active with the high-spin e^2 (up) t2^3 (up) e^1 (down) configuration having a x^2-y^2-like electron for the minority spin. We deduce that there is an appreciable orbital moment of about L_z=0.36 caused by multiplet interactions, thereby explaining the observed magnetic anisotropy. CaBaFe4O7, a member of the '114' oxide family, offers new opportunities to explore charge, orbital and spin physics in transition metal oxides

    A SIMULATION STUDY ON THE RELATIONSHIP BETWEEN THE ABUNDANCE AND SPATIAL DISTRIBUTION OF INSECTS AND SELECTED SAMPLING SCHEMES

    Get PDF
    During the development of a Bayesian approach to estimate insect population abundance, it was necessary to compare not only the reliability of Bayesian estimates, but to also compare these estimates to those obtained by traditional methods employed by entomologists. To facilitate these comparisons it was necessary to use simulated fields apportioned into quadrats where conditions representative of insect abundance and dispersion are modeled. Thus, a simulation model was developed using SAS to derive example insect populations from which samples could be drawn. The negative binomial distribution was used to simulate the proportion of infested plants (p) with various degrees of clustering (k) for specified quadrat sizes. Another component varies sample parameters which represent the total number of plants sampled per field, the number of plants sampled per quadrat, and thus the number of quadrats sampled per field

    CeRu4_4Sn6_6: a strongly correlated material with nontrivial topology

    Get PDF
    Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4_4Sn6_6 is a strongly correlated material with non-trivial topology.Comment: 10 pages, 6 figures, submitted to Scientific Report
    • …
    corecore