2,893 research outputs found

    Sub-Hz line width diode lasers by stabilization to vibrationally and thermally compensated ULE Fabry-Perot cavities

    Full text link
    We achieved a 0.5 Hz optical beat note line width with ~ 0.1 Hz/s frequency drift at 972 nm between two external cavity diode lasers independently stabilized to two vertically mounted Fabry-Perot (FP) reference cavities. Vertical FP reference cavities are suspended in mid-plane such that the influence of vertical vibrations to the mirror separation is significantly suppressed. This makes the setup virtually immune for vertical vibrations that are more difficult to isolate than the horizontal vibrations. To compensate for thermal drifts the FP spacers are made from Ultra-Low-Expansion (ULE) glass which possesses a zero linear expansion coefficient. A new design using Peltier elements in vacuum allows operation at an optimal temperature where the quadratic temperature expansion of the ULE could be eliminated as well. The measured linear drift of such ULE FP cavity of 63 mHz/s was due to material aging and the residual frequency fluctuations were less than 40 Hz during 16 hours of measurement. Some part of the temperature-caused drift is attributed to the thermal expansion of the mirror coatings. High-frequency thermal fluctuations that cause vibrations of the mirror surfaces limit the stability of a well designed reference cavity. By comparing two similar laser systems we obtain an Allan instability of 2*10-15 between 0.1 and 10 s averaging time, which is close to the theoretical thermal noise limit.Comment: submitted to Applied Physics

    Laser frequency combs for astronomical observations

    Full text link
    A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of about 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrate the first use of a laser frequency comb for wavelength calibration of an astronomical telescope. Even with a simple analysis, absolute calibration is achieved with an equivalent Doppler precision of approximately 9 meters per second at about 1.5 micrometers - beyond state-of-the-art accuracy. We show that tracking complex, time-varying systematic effects in the spectrograph and detector system is a particular advantage of laser frequency comb calibration. This technique promises an effective means for modeling and removal of such systematic effects to the accuracy required by future experiments to see direct evidence of the universe's putative acceleration.Comment: Science, 5th September 2008. 18 pages, 7 figures (7 JPG files), including Supporting Online Material. Version with higher resolution figures available at http://astronomy.swin.edu.au/~mmurphy/pub.htm

    Precision spectroscopy of the 3s-3p fine structure doublet in Mg+

    Get PDF
    We apply a recently demonstrated method for precision spectroscopy on strong transitions in trapped ions to measure both fine structure components of the 3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference data for transition frequencies, isotope shifts and fine structure splittings that are in particular useful for comparison with quasar absorption spectra, which test possible space-time variations of the fine structure constant. The measurement accuracy improves previous literature values, when existing, by more than two orders of magnitude

    A Frequency Comb calibrated Solar Atlas

    Full text link
    The solar spectrum is a primary reference for the study of physical processes in stars and their variation during activity cycles. In Nov 2010 an experiment with a prototype of a Laser Frequency Comb (LFC) calibration system was performed with the HARPS spectrograph of the 3.6m ESO telescope at La Silla during which high signal-to-noise spectra of the Moon were obtained. We exploit those Echelle spectra to study the optical integrated solar spectrum . The DAOSPEC program is used to measure solar line positions through gaussian fitting in an automatic way. We first apply the LFC solar spectrum to characterize the CCDs of the HARPS spectrograph. The comparison of the LFC and Th-Ar calibrated spectra reveals S-type distortions on each order along the whole spectral range with an amplitude of +/-40 m/s. This confirms the pattern found by Wilken et al. (2010) on a single order and extends the detection of the distortions to the whole analyzed region revealing that the precise shape varies with wavelength. A new data reduction is implemented to deal with CCD pixel inequalities to obtain a wavelength corrected solar spectrum. By using this spectrum we provide a new LFC calibrated solar atlas with 400 line positions in the range of 476-530, and 175 lines in the 534-585 nm range. The new LFC atlas improves the accuracy of individual lines by a significant factor reaching a mean value of about 10 m/s. The LFC--based solar line wavelengths are essentially free of major instrumental effects and provide a reference for absolute solar line positions. We suggest that future LFC observations could be used to trace small radial velocity changes of the whole solar photospheric spectrum in connection with the solar cycle and for direct comparison with the predicted line positions of 3D radiative hydrodynamical models of the solar photosphere.Comment: Accept on the 15th of October 2013. 9 pages, 10 figures. ON-lINE data A&A 201

    Trastuzumab Sensitizes Ovarian Cancer Cells to EGFR-targeted Therapeutics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early studies have demonstrated comparable levels of HER2/ErbB2 expression in both breast and ovarian cancer. Trastuzumab (Herceptin), a therapeutic monoclonal antibody directed against HER2, is FDA-approved for the treatment of both early and late stage breast cancer. However, clinical studies of trastuzumab in epithelial ovarian cancer (EOC) patients have not met the same level of success. Surprisingly, however, no reports have examined either the basis for primary trastuzumab resistance in ovarian cancer or potential ways of salvaging trastuzumab as a potential ovarian cancer therapeutic.</p> <p>Methods</p> <p>An in vitro model of primary trastuzumab-resistant ovarian cancer was created by long-term culture of HER2-positive ovarian carcinoma-derived cell lines with trastuzumab. Trastuzumab treated vs. untreated parental cells were compared for HER receptor expression, trastuzumab sensitivity, and sensitivity to other HER-targeted therapeutics.</p> <p>Results</p> <p>In contrast to widely held assumptions, here we show that ovarian cancer cells that are not growth inhibited by trastuzumab are still responsive to trastuzumab. Specifically, we show that responsiveness to alternative HER-targeted inhibitors, such as gefitinib and cetuximab, is dramatically potentiated by long-term trastuzumab treatment of ovarian cancer cells. HER2-positive ovarian carcinoma-derived cells are, therefore, not "unresponsive" to trastuzumab as previously assumed, even when they not growth inhibited by this drug.</p> <p>Conclusions</p> <p>Given the recent success of EGFR-targeted therapeutics for the treatment of other solid tumors, and the well-established safety profile of trastuzumab, results presented here provide a rationale for re-evaluation of trastuzumab as an experimental ovarian cancer therapeutic, either in concert with, or perhaps as a "primer" for EGFR-targeted therapeutics.</p

    Dietary supplementation with Bifidobacterium longum subsp. infantis (B. infantis) in healthy breastfed infants: study protocol for a randomised controlled trial.

    Get PDF
    BackgroundThe development of probiotics as therapies to cure or prevent disease lags far behind that of other investigational medications. Rigorously designed phase I clinical trials are nearly non-existent in the field of probiotic research, which is a contributing factor to this disparity. As a consequence, how to appropriately dose probiotics to study their efficacy is unknown. Herein we propose a novel phase I ascending dose trial of Bifidobacterium longum subsp. infantis (B. infantis) to identify the dose required to produce predominant gut colonisation in healthy breastfed infants at 6&nbsp;weeks of age.Methods/designThis is a parallel-group, placebo-controlled, randomised, double-blind ascending dose phase I clinical trial of dietary supplementation with B. infantis in healthy breastfed infants. The objective is to determine the pharmacologically effective dose (ED) of B. infantis required to produce predominant (&gt;50&nbsp;%) gut colonisation in breastfed infants at 6&nbsp;weeks of age. Successively enrolled infant groups will be randomised to receive two doses of either B. infantis or placebo on days 7 and 14 of life. Stool samples will be used to characterise the gut microbiota at increasing doses of B. infantis.DiscussionProbiotic supplementation has shown promising results for the treatment of a variety of ailments, but evidence-based dosing regimes are currently lacking. The ultimate goal of this trial is to establish a recommended starting dose of B. infantis for further efficacy-testing phase II trials designed to evaluate B. infantis for the prevention of atopic dermatitis and food allergies in at-risk children.Trial registrationClinicaltrials.gov # NCT02286999 , date of trial registration 23 October 2014

    Observation and modeling of energetic particles at synchronous orbit on July 29, 1977

    Get PDF
    In the twelve hours following a worldwide storm, there was a series of at least four magnetospheric substorms, the last and largest of which exhibited an expansion phase onset at approximately 1200 UT. Data from six spacecraft in three general local time groupings (0300, 0700, and 1300 LT) were examined and vector magnetic field data and energetic electron and ion data from approximately 15 keV to 2 MeV were employed

    A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Full text link
    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012

    High resolution water column phytoplankton composition across the Atlantic Ocean from ship-towed vertical undulating radiometry.

    Get PDF
    Different phytoplankton groups dominate ocean biomes and they drive differently the marine food web and the biogeochemical cycles. However, their distribution over most parts of the global ocean remains uncertain due to limitations in the sampling resolution of currently available in situ and satellite data. Information below surface waters are especially limited because satellite sensors only provide information on the first optical depth. We present measurements obtained during Polarstern cruise PS113 (May–June 2018) across the Atlantic Ocean from South America to Europe along numerous transects. We measured the hyperspectral underwater radiation field continuously over several hours from a vertical undulating platform towed behind the ship. Equivalent measurements were also taken at specific stations. The concentrations of phytoplankton pigments were determined on discrete water samples. Via diagnostic pigment analysis we derived the phytoplankton group chlorophyll a concentration (Chla) from this pigment data set. We obtained high resolution phytoplankton group Chla data from depth resolved apparent optical properties derived from the underwater radiation data by applying an empirical orthogonal function (EOF) analysis to the spectral data set and subsequently developing regression models using the pigment based phytoplankton group Chla and selected EOF modes. To our knowledge, this is the first data set with high horizontal coverage (50–150 km) and resolution (∼1 km) that is also resolved vertically for the Chla of major taxonomic phytoplankton groups. Subsampling with 500 permutations for cross validation verified the high robustness of our estimates to enable predictions of seven different phytoplankton groups’ Chla and of total Chla (R2 and median percent differences of the cross validation are within 0.45–0.68 and 29–53%, respectively). Our depth resolved phytoplankton groups’ Chla data reflect well the different biogeochemical provinces within the Atlantic Ocean transect and follow the distributions encountered by previous point observations. This verifies the high quality of our retrievals and provides the prospect to put similar radiometers on profiling floats or gliders which would enable the large-scale collection of vertically resolved phytoplankton data at much improved horizontal coverage relative to discrete sampling
    • …
    corecore